+0  
 
0
477
1
avatar

What would be the explicit rule if an equation started at 13 and added odd consecutive integers starting with 7?

 Sep 10, 2015
 #1
avatar+130514 
+5

So...I assume you mean the succession of terms.... is:

 

13   20    29    40    53   68  .....  

 

We can use something called the sum of differences to find a polynomial that will model this

 

                              13        20          29           40         53          68

1st differences              7          9            11          13          15

2nd differences                   2           2             2            2  

 

 

We will have a 2nd degree polynomial  with the following equations

 

a    +   b  +   c   = 13      (1)

4a  +  2b +  c   =  20      (2)

9a  +  3b  + c   =  29      (3)

 

Subtracting (1) from (2) and (1) from(3)  we end up with the following system

 

3a  + b   =  7           3a + b  = 7   (4)  

8a  + 2b  = 16    →  4a + b  = 8   (5)

 

Subtracting (4) from (5)  we have

 

a  = 1       and using (4), we have, 3(1) + b = 7       so b  = 4       and  from (1),    1 + 4 + c = 13   so c = 8

 

And our polynomial that will generate our series is given by

 

P(n) = n^2  + 4n  +  8

 

Notice that when n = 1, we get the first term, 13

When n= 2, we get the second term, 20

When n = 3  → 29

Etc.......

 

Here's a graph :  https://www.desmos.com/calculator/qr5wottz54

 

 

cool cool cool

 Sep 10, 2015
edited by CPhill  Sep 10, 2015

1 Online Users