Find the number of solutions to N &\equiv 2 \pmod{6}, \\ N &\equiv 2 \pmod{7}, \\ N &\equiv 2 \pmod{8} in the interval 0 \le N < 1000.
N≡2(modLCM[6,7,8])N≡2(mod168)
set up equation
168N+2=1000168N=998N=49984≈5.940
round down N = 6
answer is 6.