+0

0
60
1

For how many integer values of \$a\$ does the equation \$x^2 + ax + 5a = 0\$ have integer solutions for \$x\$?

Guest Jan 18, 2018
Sort:

#1
+82546
+1

x^2   +  ax  +  5a  = 0

Let m, n  be the integer roots...this implies that....

(x - m) (x - n)  =  0

x^2  - (m + n)x  + mn = 0

So....equating terms.....we have this

-m - n  = a   ⇒  -5m -5n   =  5a

mn  =  5a

So this implies that

-5m - 5n  =  mn

-5n - mn  =  5m

-n ( 5 + m)  =  5m

n  =   -5m / ( m + 5)

Note that, as m → ± inf,   n →  -5

Also.....m   must be  a multiple of 5  since  -5m  is a multiple of 5

So  we can  test some values

m       n         -m - n  =   a

0        0                          0

20     -4                       -16

All positive values of m > 20  means that -5 < n < -4   so no other integer values are possible for in this direction

-10   -10                       20

-30   -6                         36

All negative values of m < -30  means that  -6 < n < -5 so no other integer values are possible for n at all

So the possible values for "a" are :

-16, 0, 20  and 36

CPhill  Jan 19, 2018
edited by CPhill  Jan 19, 2018

### 18 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details