+0  
 
+1
694
1
avatar

Suppose \(f(x), g(x), h(x)\) are all linear functions, and \(j(x) \) and \(k(x)\)are defined by

 

\(j(x) = \max\{f(x),g(x),h(x)\} \)

 

\(k(x) = \min\{f(x),g(x),h(x)\}.\)

 

This means that, for each \(x\), we define \(j(x)\)to be equal to either \(f(x), g(x), or, h(x)\)  whichever is greatest; similarly, \(k(x)\) is the least of these three values.  

 

Shown below is the graph of \(y=j(x)\) for \(-3.5\le x\le 3.5\).  

 

 

Let \(\ell\) be the length of the graph of \(y=k(x) for -3.5\le x\le 3.5\). What is the value of \(\ell^2\)?

 Jun 10, 2018
 #1
avatar
-1

l^2 = 28.

 Dec 11, 2019

1 Online Users