+0

# help with word problem

0
52
2

A jar contains n nickels and d dimes. There are 22 coins in the jar, and the total value of the coins is \$1.60. How many nickels and how many dimes are in the jar?

Mar 15, 2021

#1
+9280
0

Let  n  be the number of nickels in the jar  and let  d  be the number of dimes.

There are  22  coins in the jar, so we can make this equation:

n + d  =  22     Let's subtract  d  from both sides of this equation

n  =  22 - d

The total value of the coins is  \$1.60,  so we can make this equation:

0.05n  +  0.10d  =  1.60

We can multiply both sides of the equation through by  10

5n  +  10d   =   160

Since  n = 22 - d  we can substitute  22 - d  in for  n

5(22 - d)  +  10d   =  160

Distribute  5  to each term in parenthesees

110 - 5d  +  10d   =   160

Combine  -5d  and  10d  to get  5d

110 + 5d   =   160

Subtract 110  from both sides of the equation

5d   =   50

Divide both sides of the equation by  5

d   =   10

Now that we know  d  =  10   we can find  n  by substituting  1  for  d  in the first equation.

n   =   22 - d   =   22 - 10   =   12

So there are  12  nickels and  10  dimes.

Mar 15, 2021
#2
0

n = nickels                              value = 5n

d= dimes = 22-n                     value = 10(22-n)      summed = 160

5n+10(22-n) = 160

-5n = -60

n = 12     the d = 22-n = 10

Mar 15, 2021