+0  
 
0
237
1
avatar+3636 

Help.

NotSoSmart  Dec 21, 2017
 #1
avatar+91027 
+1

Here are the constraints

 

y  ≥  x  + 100

x + 2y  ≤ 1400

 

And  we seek to maximize this

14x + 22y - 900

 

Here's the graph of the constraints :  https://www.desmos.com/calculator/rjxwpnzj24

 

a.  We have only one vertex at  (400,500)

b.  This point is a corner point.....the profit max occurs here

 

So....the max profit  is  14(400) + 22(500)  - 900  = $ 15700

 

 

cool cool cool

CPhill  Dec 21, 2017

31 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.