+0  
 
0
100
4
avatar+420 

The equation of the perpendicular bisector of the line segment joining the points (-3,8) and (-5,4) is y=mx+b. Find m+b.
 

 Mar 23, 2020
 #1
avatar+111330 
+1

The slope  between the points  is

 

[ 8 - 4 ]  /  [ -3 -  -5 ]   =   4 / 2   =  2

 

So...the slope  of a perpendicular line =   -1/2

 

The perpendicular bisector will pass through the midpoint of (-3,8) and ( -5, 4)

 

So this point is  [  ( -3 -5)/2 , (8 + 4)/2  ]   =  ( -4, 6 )

 

So  the equation of the perpendicular bisector is

 

y = (-1/2) ( x - -4) + 6

 

y = (-1/2) ( x + 4)  + 6

 

y = (-1/2)x - 2 + 6

 

y = (-1/2)x  + 4

 

 

cool cool cool

 Mar 23, 2020
 #2
avatar+420 
+2

Wait Cphill but you want to find m+b!

 Mar 23, 2020
 #3
avatar+111330 
0

Oops....just didn't take it far enough....

 

m  = (-1/2)    b  = 4

 

So

 

m +  b  =  

 

3 + 1/2  = 

 

7/2

 

 

 

cool cool cool

CPhill  Mar 23, 2020
 #4
avatar+420 
+1

Ha Ha Ha! Its okay Cphill! I think you made a mistake on the other question though! I think its a tough one! I dont think its C,A,B,E,D personaly

 Mar 23, 2020

11 Online Users

avatar