Processing math: 100%
 
+0  
 
0
1297
7
avatar

A geometric series b1+b2+b3++b10 has a sum of 180. Assuming that the common ratio of that series is 7/4, find the sum of the series b2+b4+b6+b8+b10.

 Jun 17, 2019
edited by Guest  Jun 17, 2019
 #1
avatar+26396 
+5

A geometric series b1+b2+b3++b10 has a sum of 180.
Assuming that the common ratio of that series is 74,
find the sum of the series b2+b4+b6+b8+b10.

 

see: https://web2.0calc.com/questions/geometric-sequences_5

 

My attempt:

Let b2+b4+b6+b8+b10=x 

 

b1+b2+b3+b4+b5+b6+b7+b8+b9+b10=180(b1+b3+b5+b7+b9)+(b2+b4+b6+b8+b10)=180(b1+b3+b5+b7+b9)+x=180(1)b1+b3+b5+b7+b9=180x

 

 

common ratio =74=b2b1=b6b5=b8b7=b10b9=tan(φ)|= slope of the red line

 

slope of the red line=common ratio=74=b2+b4+b6+b8+b10b1+b3+b5+b7+b974=xb1+b3+b5+b7+b9(2)b1+b3+b5+b7+b9=47x

 

(1)b1+b3+b5+b7+b9=180x(2)b1+b3+b5+b7+b9=47x180x=47x|771807x=4x11x=7180x=718011x=126011

 

The sum of the series b2+b4+b6+b8+b10=126011.

 

laugh

 Jun 18, 2019
edited by heureka  Jun 18, 2019
 #4
avatar+130475 
+3

That's a very interesting approach, heureka  !!!!

 

I like it  !!!!

 

 

cool cool cool

CPhill  Jun 18, 2019
 #6
avatar+26396 
+2

Thank you, CPhill !

 

laugh

heureka  Jun 20, 2019
 #2
avatar+33657 
+4

Different approach, same result:

 

.

 Jun 18, 2019
 #3
avatar
0

solve 180 = F×(1 - 1.75^10)/(1 - 1.75) for F
First term=0.503......
∑[0.503 * 1.75^(2n - 1), n , 1, 5] =1260 / 11

 Jun 18, 2019
 #5
avatar+397 
+5

Yet another different way of looking at it.

 

b1+b2++b10=b1[(7/4)101](7/4)1=180,(1) so b1[(7/4)101]=180.34=135.

 

Now consider the "same" GP but with a common ratio of -7/4.

b1b2+b3b10=b1[(7/4)101](7/4)1=135(11/4)=54011(2)

Subtract (2) from (1),

2(b2+b4++b10)=180+54011=252011, so b2+b4++b10=126011.

 Jun 19, 2019
 #7
avatar+130475 
+1

Nice....Tiggsy  and Alan   !!!!

 

 

 

cool cool cool

CPhill  Jun 20, 2019

2 Online Users