We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
69
7
avatar

A geometric series \(b_1+b_2+b_3+\cdots+b_{10}\) has a sum of 180. Assuming that the common ratio of that series is 7/4, find the sum of the series \(b_2+b_4+b_6+b_8+b_{10}.\)

 Jun 17, 2019
edited by Guest  Jun 17, 2019
 #1
avatar+22527 
+5

A geometric series \(b_1+b_2+b_3+\cdots+b_{10}\) has a sum of 180.
Assuming that the common ratio of that series is \(\dfrac{7}{4}\),
find the sum of the series \(b_2+b_4+b_6+b_8+b_{10}\).

 

see: https://web2.0calc.com/questions/geometric-sequences_5

 

My attempt:

\(\text{Let $b_2+b_4+b_6+b_8+b_{10} = x$ } \)

 

\(\begin{array}{|lrcll|} \hline & b_1+b_2+b_3+b_4+b_5+b_6+b_7+b_8+b_9+b_{10} &=& 180 \\ & (b_1+ b_3+ b_5+ b_7+ b_9)+(b_2+b_4+b_6+b_8+b_{10}) &=& 180 \\ & (b_1+ b_3+ b_5+ b_7+ b_9)+x &=& 180 \\ (1) & \mathbf{ b_1+ b_3+ b_5+ b_7+ b_9} &=& \mathbf{180 -x} \\ \hline \end{array}\)

 

 

\(\begin{array}{|rcll|} \hline \text{common ratio }=\dfrac{7}{4} = \dfrac{b_2}{b_1}= \dfrac{b_6}{b_5}= \dfrac{b_8}{b_7}=\dfrac{b_{10}}{b_9}=\tan(\varphi) \quad | \quad =\text{ slope of the red line} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline &\text{slope of the red line} = \text{common ratio} = \dfrac{7}{4} &=& \dfrac{b_2+b_4+b_6+b_8+b_{10}}{b_1+ b_3+ b_5+ b_7+ b_9} \\ & \dfrac{7}{4} &=& \dfrac{x}{b_1+ b_3+ b_5+ b_7+ b_9} \\ (2)& \mathbf{b_1+ b_3+ b_5+ b_7+ b_9} &=& \mathbf{\dfrac{4}{7}x} \\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline (1) & \mathbf{ b_1+ b_3+ b_5+ b_7+ b_9} &=& \mathbf{180 -x} \\ (2)& \mathbf{b_1+ b_3+ b_5+ b_7+ b_9} &=& \mathbf{\dfrac{4}{7}x} \\ \hline & 180 -x &=& \dfrac{4}{7}x \quad | \quad \cdot 7 \\ & 7\cdot 180 -7x &=& 4x \\ & 11x &=& 7\cdot 180 \\\\ & x &=& \dfrac{7\cdot 180}{11} \\ \\ & \mathbf{x} &=& \mathbf{ \dfrac{1260}{11} } \\ \hline \end{array} \)

 

The sum of the series \(b_2+b_4+b_6+b_8+b_{10} = \mathbf{ \dfrac{1260}{11} }\).

 

laugh

 Jun 18, 2019
edited by heureka  Jun 18, 2019
 #4
avatar+101813 
+3

That's a very interesting approach, heureka  !!!!

 

I like it  !!!!

 

 

cool cool cool

CPhill  Jun 18, 2019
 #6
avatar+22527 
+2

Thank you, CPhill !

 

laugh

heureka  Jun 20, 2019
 #2
avatar+28064 
+4

Different approach, same result:

 

.

 Jun 18, 2019
 #3
avatar
0

solve 180 = F×(1 - 1.75^10)/(1 - 1.75) for F
First term=0.503......
∑[0.503 * 1.75^(2n - 1), n , 1, 5] =1260 / 11

 Jun 18, 2019
 #5
avatar+28 
+3

Yet another different way of looking at it.

 

\(\displaystyle b_{1}+b_{2}+\dots+b_{10}=\frac{b_{1}[(7/4)^{10}-1]}{(7/4)-1}=180,\dots \dots(1)\\ \text{ so }\\b_{1}[(7/4)^{10}-1]=180.\frac{3}{4}=135.\)

 

Now consider the "same" GP but with a common ratio of -7/4.

\(\displaystyle b_{1}-b_{2}+b_{3}- \dots -b_{10}=\frac{b_{1}[(-7/4)^{10}-1]}{(-7/4)-1}=\frac{135}{(-11/4)}=-\frac{540}{11}\dots \dots(2)\)

Subtract (2) from (1),

\(\displaystyle 2(b_{2}+b_{4}+\dots +b_{10})=180+\frac{540}{11}=\frac{2520}{11},\\ \text{ so }\\ \displaystyle b_{2}+b_{4}+\dots +b_{10}=\frac{1260}{11}.\)

.
 Jun 19, 2019
 #7
avatar+101813 
+1

Nice....Tiggsy  and Alan   !!!!

 

 

 

cool cool cool

CPhill  Jun 20, 2019

2 Online Users