We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
167
1
avatar

Given that $a(a+2b) = \frac{104}3$, $b(b+2c) = \frac{7}{9}$, and $c(c+2a) = -7$, find $|a+b+c|$.

 May 13, 2018
 #1
avatar+985 
+2

Given that \(a(a+2b) = \frac{104}3, b(b+2c) = \frac{7}{9}, \text{and}\ c(c+2a) = -7, \text{find}\ |a+b+c|.\)

 

We distribute the variables:

 

\(a^2+2ab=\frac{104}3,b^2+2bc=\frac79, \text{and} \ c^2+2ac=-7\)

 

Add the three equations:

 

\(a^2+b^2+c^2+2ab+2bc+2ac=\frac{104}{3}+\frac79-7\)

 

We recognize the left side of the equation as the expanded form of \((a+b+c)^2\)

 

We can rewrite the equation in the form like this:

 

\((a+b+c)^2=\frac{256}9 \)

 

Since the problem asks for \( |a+b+c|\), we take the square root:

 

\(\sqrt{(a+b+c)^2}=\sqrt{\frac{256}9}\\ a+b+c=\pm\frac{16}3 \)

 

Therefore, \( |a+b+c|=\boxed{\frac{16}3}\) 

 

I hope this helped,

 

Gavin

 May 13, 2018

9 Online Users

avatar
avatar