+0  
 
0
32
1
avatar

Given that $a(a+2b) = \frac{104}3$, $b(b+2c) = \frac{7}{9}$, and $c(c+2a) = -7$, find $|a+b+c|$.

Guest May 13, 2018
Sort: 

1+0 Answers

 #1
avatar+662 
+2

Given that \(a(a+2b) = \frac{104}3, b(b+2c) = \frac{7}{9}, \text{and}\ c(c+2a) = -7, \text{find}\ |a+b+c|.\)

 

We distribute the variables:

 

\(a^2+2ab=\frac{104}3,b^2+2bc=\frac79, \text{and} \ c^2+2ac=-7\)

 

Add the three equations:

 

\(a^2+b^2+c^2+2ab+2bc+2ac=\frac{104}{3}+\frac79-7\)

 

We recognize the left side of the equation as the expanded form of \((a+b+c)^2\)

 

We can rewrite the equation in the form like this:

 

\((a+b+c)^2=\frac{256}9 \)

 

Since the problem asks for \( |a+b+c|\), we take the square root:

 

\(\sqrt{(a+b+c)^2}=\sqrt{\frac{256}9}\\ a+b+c=\pm\frac{16}3 \)

 

Therefore, \( |a+b+c|=\boxed{\frac{16}3}\) 

 

I hope this helped,

 

Gavin

GYanggg  May 13, 2018

10 Online Users

avatar
avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy