Let the roots of
z3=2+2i
be a1+ib1, a2+ib2 and a3+ib3.
Compute a1a2a3.
z3=2+2i, z3=a+ibconvert 2+2i to polar form:r=√a2+b2=√22+22=√8=√233√r=3√√23=3√232=(232)13=212=√2θ=arctan(ba)=arctan(22)=π4θi=π4+2πk3θi=π12+23πk,k=0, 1,2θ1=112π,θ2=34π,θ3=1712π
z0=√2(cos(112π)+isin(112π))|cos(112π)=√2(√3+1)4z1=√2(cos(34π)+isin(34π))|cos(34π)=−√22z2=√2(cos(1712π)+isin(1712π))|cos(1712π)=−√2(√3−1)4
a1a2a3=√2√2(√3+1)4√2(−√22)√2(−√2(√3−1)4)=14(√3+1)(√3−1)=3−14=24=12