+0  
 
0
472
1
avatar

If A and B are the roots of x^2 - 4x + 1 = 0, then find A^3 + B^3.

 Jun 21, 2020
 #1
avatar+781 
+1

This is simple. x^2-4x+1 is not factorable so we plug it into the quadratic equation.

 

\(x = \frac{-b \pm \sqrt{b^2-4ac}} {2a}\\ x=\frac{4\pm\sqrt{(-4)^2-4(1)(1)}}{2(1)}\\ x=\frac{4\pm\sqrt{12}}{2}\\ x=\frac{4\pm2\sqrt{3}}{2}\\ x=2\pm\sqrt{3}\)

 

Cube the two roots.

 

\((2+\sqrt{3})^3+(2-\sqrt{3})^3\\ =\boxed{52}\)

 Jun 21, 2020

3 Online Users

avatar
avatar
avatar