This is simple. x^2-4x+1 is not factorable so we plug it into the quadratic equation.
\(x = \frac{-b \pm \sqrt{b^2-4ac}} {2a}\\ x=\frac{4\pm\sqrt{(-4)^2-4(1)(1)}}{2(1)}\\ x=\frac{4\pm\sqrt{12}}{2}\\ x=\frac{4\pm2\sqrt{3}}{2}\\ x=2\pm\sqrt{3}\)
Cube the two roots.
\((2+\sqrt{3})^3+(2-\sqrt{3})^3\\ =\boxed{52}\)