We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
29
2
avatar

There is a unique polynomial \(P(x)\) of degree 4 with rational coefficients and leading coefficient 1 which has \(\sqrt{2}+\sqrt{5}\) as a root. What is \(P(1)\)?

 Apr 16, 2019
 #2
avatar+100168 
+2

 There is a unique polynomial  P(x) of degree 4 with rational coefficients and leading coefficient 1

which has  as a root  \(\sqrt{2}+\sqrt{5} \)

What is P(1) ?

 

\(\text{Let the polynomial be }\\ P(x)=x^4+bx^3+cx^2+dx+e\\ P(\sqrt2+\sqrt5)=0\\ (\sqrt2+\sqrt5)^4+b(\sqrt2+\sqrt5)^3+c(\sqrt2+\sqrt5)^2+(\sqrt2+\sqrt5)=0\\ 89+28\sqrt{10}+b(2\sqrt{10}+17\sqrt2+7\sqrt5)+c(7+2\sqrt{10})+d(\sqrt2+\sqrt5)+e=0\\ (89+7c+e)+\sqrt{10}(28+2b+2c)+\sqrt2(17b+d)+\sqrt5(7b+d)=0\\ \text{This means that}\\ 7b+d=0\qquad and \qquad17b+d=0\\ 7b=17b\\ b=0\\ d=0\\ also\\ 28+2b+2c=0\\ 28+2c=0\\ c=-14\\ and\\ 89+7c+e=0\\ 89-98=-e\\ e=9\\ \text{So the polynomial is} \qquad P(x)=x^4-14x^2+9\\ p(1)=1-14+9=-4 \)

.
 
 Apr 18, 2019

35 Online Users

avatar
avatar
avatar