We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
37
1
avatar+1110 

What is the smallest distance between the origin and a point on the graph of \(y=\dfrac{1}{\sqrt{2}}\left(x^2-3\right)\)?

 

y=(1/√2)*(x^2-3)

 Apr 28, 2019
 #1
avatar+100549 
+1

y = (1/√2)*(x^2-3)

 

Let  ( a, (1/√2)*(a^2-3) )   be the point we are looking for

 

If the distance is minimized then so is the distance^2.......

 

So

 

D^2  =  (a - 0)^2  + ( (1/√2)*(a^2-3) - 0 )^2   =  a^2  + (1/2)(a^2 - 3)^2

 

Take the dervative wth respect to a and set to 0

 

2a + (a^2 - 3)(2a)  = 0

 

(2a) [ 1 + a^2 - 3] = 0         the first factor set to 0  and solved for a is trivial

 

Setting the second factor to 0  and solving for a produces

 

a^2 - 2  = 0

 

a^2  =  2

 

a =  ±√2

 

So...... (1/√2)*(√2^2 - 3)  =   (1/√2)(-1)  =  -1/√2

 

So....the smallest  distance from either of these points to the origin  =

 

 

√ [ (√2)^2  + (1/√2)^2 ]   =  √  [ 2 + 1/2 ]  =   √5 /√2  =  √10/2   units

 

 

 

cool cool cool

 Apr 28, 2019
edited by CPhill  May 3, 2019

29 Online Users

avatar
avatar
avatar