+0  
 
-2
540
1
avatar+285 

What is the value of  for which \(\sqrt{x + \sqrt{x + \sqrt{x + \ldots}}} = 5?\)

 Jan 12, 2021

Best Answer 

 #1
avatar
+2

Let $y=\sqrt{x+\sqrt{x+\sqrt{x+\cdots}}}=5.$

If you square $y$, you get $25=x+\sqrt{x+\sqrt{x+\sqrt{x+\cdots}}}=x+y$.

But since the value of y is 5, then you get $25=x+5$.

Therefore, $x=\boxed{20}$.

 Jan 12, 2021
 #1
avatar
+2
Best Answer

Let $y=\sqrt{x+\sqrt{x+\sqrt{x+\cdots}}}=5.$

If you square $y$, you get $25=x+\sqrt{x+\sqrt{x+\sqrt{x+\cdots}}}=x+y$.

But since the value of y is 5, then you get $25=x+5$.

Therefore, $x=\boxed{20}$.

Guest Jan 12, 2021

2 Online Users