What is the value of for which \(\sqrt{x + \sqrt{x + \sqrt{x + \ldots}}} = 5?\)
Let $y=\sqrt{x+\sqrt{x+\sqrt{x+\cdots}}}=5.$
If you square $y$, you get $25=x+\sqrt{x+\sqrt{x+\sqrt{x+\cdots}}}=x+y$.
But since the value of y is 5, then you get $25=x+5$.
Therefore, $x=\boxed{20}$.