+0  
 
0
66
2
avatar

Find the number of ways to put 5 indistinguishable balls in 4 distinguishable boxes.

 Dec 4, 2019

Best Answer 

 #2
avatar
+1

[5 + 4 - 1] C [4 - 1] = 8 C 3 = 56 ways - with no restrictions.

 Dec 4, 2019
 #1
avatar
0

5C4

\(\frac{5!}{(5-4)!4!}\)

=5

 Dec 4, 2019
 #2
avatar
+1
Best Answer

[5 + 4 - 1] C [4 - 1] = 8 C 3 = 56 ways - with no restrictions.

Guest Dec 4, 2019

46 Online Users

avatar
avatar
avatar