If \(m+\frac{1}{m}=8\), then what is the value of \(m^{2}+\frac{1}{m^{2}}+4\)?
-hihihi
😎😎😎
m + 1/m = 8 square both sides
(m + 1/m)^2 = 64
m^2 + 2 m (1/m) + 1/m^2 = 64
m^2 + 1/m^2 + 2 = 64
m^2 + 1/m^2 = 62
m^2 + 1/m^2 + 4 = 62 + 4 = 66