Let f(x)=|x+1|−|2x−3|+|x+2|.
Find the smallest and largest possible values of f(x).
Solve the equation f(x)=0.
Solve the inequality |f(x)|≤1
Hello Guest!
Let f(x)=|x+1|−|2x−3|+|x+2|.
Find the smallest and largest possible values of f(x).
\(f(x)_{min}=-4\) \(f(x)_{max}=4\)
\(x\in \mathbb R|\ -\infty \leq x\leq -2\) \(1.5\leq x \leq \infty\)
Solve the equation f(x)=0. \(x = 0\)
Solve the inequality |f(x)|≤1 \(x\in \mathbb R|-0.5\leq x\leq 0.5\)
asinus
!