An integer \(n\) is said to be square-free if the only perfect square that divides \(n\) is \(1^2\). How many positive odd integers greater than 1 and less than 100 are square-free?
This is how I would personally approach this problem.
#1: List all the integers from 1 to 100.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
#2: Eliminate all even numbers and 1 and 100 from the list since we are only interested in "square-free" numbers bounded between 1 and 100.
3 | 5 | 7 | 9 | ||||||
11 | 13 | 15 | 17 | 19 | |||||
21 | 23 | 25 | 27 | 29 | |||||
31 | 33 | 35 | 37 | 39 | |||||
41 | 43 | 45 | 47 | 49 | |||||
51 | 53 | 55 | 57 | 59 | |||||
61 | 63 | 65 | 67 | 69 | |||||
71 | 73 | 75 | 77 | 79 | |||||
81 | 83 | 85 | 87 | 89 | |||||
91 | 93 | 95 | 97 | 99 |
#3: Eliminate multiples of the first perfect square I will test, 3^2, or 9. I am not testing 2^2, or 4 because I have already eliminate the even numbers from the list, so no multiples of 4 remain in the list right now.
3 | 5 | 7 | |||||||
11 | 13 | 15 | 17 | 19 | |||||
21 | 23 | 25 | 29 | ||||||
31 | 33 | 35 | 37 | 39 | |||||
41 | 43 | 47 | 49 | ||||||
51 | 53 | 55 | 57 | 59 | |||||
61 | 65 | 67 | 69 | ||||||
71 | 73 | 75 | 77 | 79 | |||||
83 | 85 | 87 | 89 | ||||||
91 | 93 | 95 | 97 |
#4: Eliminate the multiples of the second perfect square I will test, 5^2, or 25. Again, I am not testing 4^2, or 16, because even numbers have already been filtered out.
3 | 5 | 7 | |||||||
11 | 13 | 15 | 17 | 19 | |||||
21 | 23 | 29 | |||||||
31 | 33 | 35 | 37 | 39 | |||||
41 | 43 | 47 | 49 | ||||||
51 | 53 | 55 | 57 | 59 | |||||
61 | 65 | 67 | 69 | ||||||
71 | 73 | 77 | 79 | ||||||
83 | 85 | 87 | 89 | ||||||
91 | 93 | 95 | 97 |
#5: Eliminate the multiples of 7^2, or 49. Only one number gets eliminated.
3 | 5 | 7 | |||||||
11 | 13 | 15 | 17 | 19 | |||||
21 | 23 | 29 | |||||||
31 | 33 | 35 | 37 | 39 | |||||
41 | 43 | 47 | |||||||
51 | 53 | 55 | 57 | 59 | |||||
61 | 65 | 67 | 69 | ||||||
71 | 73 | 77 | 79 | ||||||
83 | 85 | 87 | 89 | ||||||
91 | 93 | 95 | 97 |
#6: Normally, I would eliminate the multiples of 9^2, but I already sifted out the multiples of nine, so all the multiples of 9^2 have already been eliminated from the list.
#7: There is no need to eliminate the multiples of 11^2, or 121, since that multiple is larger than the largest number we are testing, so we can stop the process here. The numbers that remain are "square-free."
In a list, they are 3,5,7,11,13,15,17,19,21,23,29,31,33,35,37,39,41,43,47,51,53,55,57,59,61,65,67,69,71,73,77,79,83,85,87,89,91,93,95,97.