Processing math: 100%
 
+0  
 
0
615
1
avatar

Let z be a complex number such that z^5 + z^4 + 2z^3 + z^2 + z = 0. Find all possible values of |z|. 

 Apr 14, 2019
 #1
avatar+6252 
+1

z=0 is an obvious solution|z|=0

 

Assume z0z5+z4+2z3+z2+z=0z4+z2=z(z4+2z2+1)z(z2+1)=(z2+1)2

 

if z21z=(z2+1)z2+z+1=0z=1±32=12±i32|z|=14+34=1

 

if z2=1z=±i|z|=1

.
 Apr 15, 2019

1 Online Users