We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
35
3
avatar

The Fibonacci numbers 1, 1, 2, 3, 5, 8, . . . form a sequence where each term, after the first two, is the sum of the two previous terms. How many of the first 1000 terms are even?

 Nov 25, 2019

Best Answer 

 #2
avatar
+1

The above is true for the first 100 NOT 1000 numbers. This formula applies to any number of Fibonacci Numbers: Floor(N/3). So, the first 100 F. Numbers have:Floor(100/3) =33. The first 1,000 F. Numbers should have: Floor(1,000 / 3) =333 Even Numbers.

 Nov 25, 2019
 #1
avatar
0

index=1000; i=0; n=1;i++;p=1;i++;printn,",",p,", ", ;loop1:n=n+p;i++;printn,", ", ;if(i>=index, goto loop3,0);loop2:p=p+n; i++;printp,", ", ;if(i>=index, goto loop3,0); if(i<=index and index%2==0, goto loop1, goto loop1); loop3:print"= Fibonacci Nos =",i

 

 

 

only 33 integers found: 0 | 2 | 8 | 34 | 144 | 610 | 2584 | 10946 | 46368 | 196418 | 832040 | 3524578 | 14930352 | 63245986 | 267914296 | 1134903170 | 4807526976 | 20365011074 | 86267571272 | 365435296162 | 1548008755920 | 6557470319842 | 27777890035288 | 117669030460994 | 498454011879264 | 2111485077978050 | 8944394323791464 | 37889062373143906 | 160500643816367088 | 679891637638612258 | 2880067194370816120 | 12200160415121876738 | 51680708854858323072
(assuming only positive integers)

 Nov 25, 2019
 #2
avatar
+1
Best Answer

The above is true for the first 100 NOT 1000 numbers. This formula applies to any number of Fibonacci Numbers: Floor(N/3). So, the first 100 F. Numbers have:Floor(100/3) =33. The first 1,000 F. Numbers should have: Floor(1,000 / 3) =333 Even Numbers.

Guest Nov 25, 2019
 #3
avatar+23575 
+1

The Fibonacci numbers 1, 1, 2, 3, 5, 8, . . . form a sequence where each term, after the first two, is the sum of the two previous terms.

How many of the first 1000 terms are even?

 

Even Fibonacci numbers: \(\large f_{3n} ,\ n\in N\)

sourcehttp://oeis.org/search?q=even+fibonacci&sort=&language=german&go=Suche

 

\(\begin{array}{|rcll|} \hline f_{\color{red}3}=2,\ f_{\color{red}6}=8,\ f_{\color{red}9} = 34,\ f_{\color{red}12}=144,\ \ldots,\ f_{\color{red}3n},\ \ldots \text{ Fibonacci numbers are even} \\ \hline \\ \begin{array}{rcll} \text{arithmetic series:} \\ 3+(n-1)\cdot 3 &=& 1000 \\ (n-1)\cdot 3 &=& 997 \\ n-1 &=& \dfrac{997}{3} \\ n &=& 1+\dfrac{997}{3} \\ n &=& 333.\overline{3} \\ \mathbf{n} &=& \mathbf{333} \\ \end{array} \\ \hline \end{array}\)

 

laugh

 Nov 26, 2019
edited by heureka  Nov 26, 2019

17 Online Users