+0  
 
0
218
1
avatar

Let \(f(x) = (x+2)^2-5\). If the domain of \(f\) is all real numbers, then \(f\) does not have an inverse function, but if we restrict the domain of \(f\) to an interval \( [c,\infty)\), then \(f\) may have an inverse function. What is the smallest value of \(c\) we can use here, so that \(f\) does have an inverse function?

 Aug 7, 2019
 #1
avatar+6180 
+1

If we restrict the domain from the vertex to positive infinity then f(x) will be a bijection.

We can read the vertex off as x=-2, so we restict the domain as -2 <= x < +infinity

 Aug 7, 2019

28 Online Users

avatar
avatar