We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
158
4
avatar

What is this 8 < 4x + 4 < 2(x + 10)

 Dec 3, 2018
 #1
avatar+714 
+1

Split this:

\(8<4x+4, 4x+4<2x+20\)

\(4x+4<2x+20, 2x<16, x<8\)

Combining \(1  and  \(x<8\) we get

\(1


You are very welcome!

:P

 Dec 3, 2018
edited by CoolStuffYT  Dec 3, 2018
 #2
avatar+102441 
+1

 

Edit:

The LaTex is not displaying properly - I do not know whay, maybe it will fix itself   angry

The final answer was 1

 

 

\( 8 < 4x + 4 < 2(x + 10)\\ 8 < 4x + 4 \quad and \quad 4x + 4 < 2(x + 10)\\ 4 < 4x \qquad and \qquad 4x + 4 < 2x + 20\\ 1 < x \qquad \;\;and \qquad \;\;\quad2x < 16\\ 1 < x \qquad \;\;and \qquad \;\;\quad x < 8\\~\\ 1

 Dec 3, 2018
edited by Melody  Dec 3, 2018
edited by Melody  Dec 3, 2018
 #4
avatar+714 
0

Yes, that is pretty odd, my answer looked weird.

CoolStuffYT  Dec 3, 2018
 #3
avatar+101796 
+1

8 < 4x + 4 < 2(x + 10)

We have two inequalities to consider

 

8 < 4x+ 4                                                   4x +4  < 2(x + 10)

Subtract 4 from both sides                        divide through by 2

4 < 4x                                                         2x + 2 < x + 10

Divide both sides by 4                               Subtract 2, x from both sides

1 < x    (1)                                                           x  < 8   (2)

 

Combining (1) and (2) we have

 

1 < x < 8

 

 

cool cool cool

 Dec 3, 2018

16 Online Users

avatar
avatar