We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
40
1
avatar

Let A(-8,4) and B(6,6).  Point C(0,k) is such that the circumcircle of triangle ABC has equation x^2 + y^2 + 2x - 10y - 24 = 0.  Find all possible values of k.

 Nov 18, 2019
 #1
avatar+105370 
+1

We can find the  center and radius of the circle by completing the square on x and  y

 

x^2 + 2x + 1  + y^2 -10y + 25  = 24 + 1 + 25

(x + 1)^2  + (y - 5)^2  = 50

 

The center is  ( -1, 5)  and the radius is sqrt (50)

 

And we can find the possible values for k by solving this :

 

(-1 -0)^2 + ( 5 - k)^2 = 50    

 

1  + k^2 - 10k + 25  = 50

 

k^2 - 10k + 26  =  50

 

k^2  - 10k - 24    = 0     factor

 

(k - 12) (k + 2)  = 0

 

Set both factors to 0 and solve for k and we get that

 

k = 12     or   k   = -2

 

See the image here :  

 

 

 

cool cool cool

 Nov 18, 2019

30 Online Users

avatar
avatar