We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
35
1
avatar

A triangle with sides of 5, 12, and 13 has both an inscribed and a circumscribed circle. What is the distance between the centers of those circles?

 Nov 17, 2019
 #1
avatar+105370 
+2

Let A  = (0,0)

Let B  = (0,5)

Let C  = (12,0)

 

AB = 5

AC = 12

BC = 13

 

We can calculate the incenter   as  

 

x =      (0)(BC)  + (0) (AC)  + (12)(AB)               12 * 5                              

          ________________________  =           ______   =  2

                     perimeter                                        30

 

 

y =  (0)(BC)  + (5)(AC) + (0)(AB)                      5 * 12

       _________________________  =       __________   =    2

                    perimeter                                        30

 

 

So....the incenter  is  (2, 2)

 

The circumcenter  occurs at the midpoint of the hypotenuse =  [ (12 + 0) / 2 , (5 + 0) /2 ] =

  ( 6, 5/2)  = (6, 2.5)

 

The distance  between these points is

 

sqrt [ ( 6 - 2)^2  + ( 2.5 - 2)^2 ]   = sqrt [ 16 + .25 ] = sqrt [16 + 1/4]  =  sqrt [65] / 2

 

 

 

cool cool cool

 Nov 17, 2019

23 Online Users

avatar