Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
969
5
avatar+1245 

Find the number of real solutions to x=1x+x2x3+x4x5+.

 Jul 1, 2019

Best Answer 

 #5
avatar+26396 
+3

Find the number of real solutions to x=1x+x2x3+x4x5+.

 

x=1x+x2x3+x4x5+x=1x+x2x3+x4x5+Infinite Geometric Seriesa=1, r=x1=x2x=x3x2==xsum=a1r as long as 1<r<1sum=11(x)sum=11+xx=11+xx(1+x)=1x+x2=1x2+x1=0x=1±124(1)2=1±52x1=1+52r=x1=1+52=152r=0.61803398875|1<0.61803398875<1x2=152r=x2=152=1+52r=1.61803398875|1<1.61803398875<1 false, no solution!

 

Real solution is x=1+52

 

laugh

 Jul 2, 2019
edited by heureka  Jul 2, 2019
edited by heureka  Jul 3, 2019
 #1
avatar
0

This is the expansion of: x = 1 / (x + 1) =x^2 + x - 1=0 . Use the quadratic formula to find x;

x = 1/2*(sqrt(5) - 1)

 

x = 1/2*(-1-sqrt(5))

 Jul 1, 2019
 #2
avatar
0

I'm not sure if this is relevant but for x = 1/2*(-1-sqrt(5)) the RHS doesn't converge

 Jul 1, 2019
 #4
avatar+130474 
+2

The series     1  + x^2  + x^4 + .......  sums  to     1 / ( 1 - x^2)

The series     -[x  + x^3  + x^5  +  ] .........sums  to   -  [  x / (1 -x^2 )

 

So

 

x  =   1 /(1 - x^2)  - x / (1 -x^2)

 

x =  (1 - x) / (1 -x^2)

 

x ( 1 - x^2)  = (1 - x)

 

x - x^3  =  1 - x

 

x^3 - 2x + 1  =  0   (1)

 

x = 1  is a solution  to  (1)

 

Using synthetic division, we have

 

 

1  [  1  0   - 2    1  ]

           1    1    -1

      ____________

       1  1    -1     0

 

The remaining polynomial is

 

x^2  + x  - 1    =   0          complete the square on x

 

x^2 + x + 1/4   =  1 + 1/4

 

( x + 1/2)^2   =  5/4          take both roots

 

x + 1/2  = ±√5 /2

 

x  =   -1 ±√5

         _____         ( 2)

            2

 

But x = 1 makes the original equation undefined....so....the only solutions  are represented by (2)

 

 

cool cool cool

 Jul 1, 2019
 #5
avatar+26396 
+3
Best Answer

Find the number of real solutions to x=1x+x2x3+x4x5+.

 

x=1x+x2x3+x4x5+x=1x+x2x3+x4x5+Infinite Geometric Seriesa=1, r=x1=x2x=x3x2==xsum=a1r as long as 1<r<1sum=11(x)sum=11+xx=11+xx(1+x)=1x+x2=1x2+x1=0x=1±124(1)2=1±52x1=1+52r=x1=1+52=152r=0.61803398875|1<0.61803398875<1x2=152r=x2=152=1+52r=1.61803398875|1<1.61803398875<1 false, no solution!

 

Real solution is x=1+52

 

laugh

heureka Jul 2, 2019
edited by heureka  Jul 2, 2019
edited by heureka  Jul 3, 2019

5 Online Users

avatar
avatar