Find the number of real solutions to x=1−x+x2−x3+x4−x5+⋯.
x=1−x+x2−x3+x4−x5+⋯x=1−x+x2−x3+x4−x5+⋯⏟Infinite Geometric Seriesa=1, r=−x1=x2−x=−x3x2=⋯=−xsum=a1−r as long as −1<r<1sum=11−(−x)sum=11+xx=11+xx(1+x)=1x+x2=1x2+x−1=0x=−1±√12−4⋅(−1)2=−1±√52x1=−1+√52r=−x1=−−1+√52=1−√52r=−0.61803398875|−1<−0.61803398875<1✓x2=−1−√52r=−x2=−−1−√52=1+√52r=1.61803398875|−1<1.61803398875<1 false, no solution!
Real solution is x=−1+√52
This is the expansion of: x = 1 / (x + 1) =x^2 + x - 1=0 . Use the quadratic formula to find x;
x = 1/2*(sqrt(5) - 1)
x = 1/2*(-1-sqrt(5))
I'm not sure if this is relevant but for x = 1/2*(-1-sqrt(5)) the RHS doesn't converge
The series 1 + x^2 + x^4 + ....... sums to 1 / ( 1 - x^2)
The series -[x + x^3 + x^5 + ] .........sums to - [ x / (1 -x^2 )
So
x = 1 /(1 - x^2) - x / (1 -x^2)
x = (1 - x) / (1 -x^2)
x ( 1 - x^2) = (1 - x)
x - x^3 = 1 - x
x^3 - 2x + 1 = 0 (1)
x = 1 is a solution to (1)
Using synthetic division, we have
1 [ 1 0 - 2 1 ]
1 1 -1
____________
1 1 -1 0
The remaining polynomial is
x^2 + x - 1 = 0 complete the square on x
x^2 + x + 1/4 = 1 + 1/4
( x + 1/2)^2 = 5/4 take both roots
x + 1/2 = ±√5 /2
x = -1 ±√5
_____ ( 2)
2
But x = 1 makes the original equation undefined....so....the only solutions are represented by (2)
Find the number of real solutions to x=1−x+x2−x3+x4−x5+⋯.
x=1−x+x2−x3+x4−x5+⋯x=1−x+x2−x3+x4−x5+⋯⏟Infinite Geometric Seriesa=1, r=−x1=x2−x=−x3x2=⋯=−xsum=a1−r as long as −1<r<1sum=11−(−x)sum=11+xx=11+xx(1+x)=1x+x2=1x2+x−1=0x=−1±√12−4⋅(−1)2=−1±√52x1=−1+√52r=−x1=−−1+√52=1−√52r=−0.61803398875|−1<−0.61803398875<1✓x2=−1−√52r=−x2=−−1−√52=1+√52r=1.61803398875|−1<1.61803398875<1 false, no solution!
Real solution is x=−1+√52