Find the number of real solutions to \(x = 1 - x + x^2 - x^3 + x^4 - x^5 + \dotsb.\)
Find the number of real solutions to \(x = 1 - x + x^2 - x^3 + x^4 - x^5 + \dotsb\).
\(\begin{array}{|rcll|} \hline \mathbf{x} &=& \mathbf{1 - x + x^2 - x^3 + x^4 - x^5 + \dotsb} \\ \\ x &=& \underbrace{ 1 - x + x^2 - x^3 + x^4 - x^5 + \dotsb }_{\text{Infinite Geometric Series}} \\ && a=1,\ r= \dfrac{-x}{1}=\dfrac{x^2}{-x}=\dfrac{-x^3}{x^2}=\dotsb=-x \\ \\ && \boxed{sum = \dfrac{a}{1-r} \text{ as long as } -1 < r < 1 } \\ \\ && sum = \dfrac{1}{1-(-x)} \\ && sum = \dfrac{1}{1+x } \\\\ x &=& \dfrac{1}{1+x } \\ x(1+x) &=& 1 \\ x+x^2 &=& 1 \\ x^2+x-1 &=& 0 \\\\ x &=& \dfrac{-1\pm\sqrt{1^2-4\cdot (-1)}} {2} \\ &=& \dfrac{-1\pm\sqrt{5}} {2} \\\\ \mathbf{x_1} &=& \mathbf{ \dfrac{-1+\sqrt{5}} {2}} \\ r &=& -x_1 \\ &=& -\dfrac{-1+\sqrt{5}} {2} \\ &=& \dfrac{1-\sqrt{5}} {2} \\ r &=& -0.61803398875 \quad | \quad -1 < -0.61803398875 < 1 \checkmark \\\\ \mathbf{x_2} &=& \mathbf{ \dfrac{-1-\sqrt{5}} {2}} \\ r &=& -x_2 \\ &=& -\dfrac{-1-\sqrt{5}} {2} \\ &=& \dfrac{ 1+\sqrt{5}} {2} \\ r &=& 1.61803398875 \quad | \quad -1 < 1.61803398875 < 1 \text{ false, no solution!} \\ \hline \end{array}\)
Real solution is \(x=\mathbf{ \dfrac{-1+\sqrt{5}} {2}}\)
This is the expansion of: x = 1 / (x + 1) =x^2 + x - 1=0 . Use the quadratic formula to find x;
x = 1/2*(sqrt(5) - 1)
x = 1/2*(-1-sqrt(5))
I'm not sure if this is relevant but for x = 1/2*(-1-sqrt(5)) the RHS doesn't converge
The series 1 + x^2 + x^4 + ....... sums to 1 / ( 1 - x^2)
The series -[x + x^3 + x^5 + ] .........sums to - [ x / (1 -x^2 )
So
x = 1 /(1 - x^2) - x / (1 -x^2)
x = (1 - x) / (1 -x^2)
x ( 1 - x^2) = (1 - x)
x - x^3 = 1 - x
x^3 - 2x + 1 = 0 (1)
x = 1 is a solution to (1)
Using synthetic division, we have
1 [ 1 0 - 2 1 ]
1 1 -1
____________
1 1 -1 0
The remaining polynomial is
x^2 + x - 1 = 0 complete the square on x
x^2 + x + 1/4 = 1 + 1/4
( x + 1/2)^2 = 5/4 take both roots
x + 1/2 = ±√5 /2
x = -1 ±√5
_____ ( 2)
2
But x = 1 makes the original equation undefined....so....the only solutions are represented by (2)
Find the number of real solutions to \(x = 1 - x + x^2 - x^3 + x^4 - x^5 + \dotsb\).
\(\begin{array}{|rcll|} \hline \mathbf{x} &=& \mathbf{1 - x + x^2 - x^3 + x^4 - x^5 + \dotsb} \\ \\ x &=& \underbrace{ 1 - x + x^2 - x^3 + x^4 - x^5 + \dotsb }_{\text{Infinite Geometric Series}} \\ && a=1,\ r= \dfrac{-x}{1}=\dfrac{x^2}{-x}=\dfrac{-x^3}{x^2}=\dotsb=-x \\ \\ && \boxed{sum = \dfrac{a}{1-r} \text{ as long as } -1 < r < 1 } \\ \\ && sum = \dfrac{1}{1-(-x)} \\ && sum = \dfrac{1}{1+x } \\\\ x &=& \dfrac{1}{1+x } \\ x(1+x) &=& 1 \\ x+x^2 &=& 1 \\ x^2+x-1 &=& 0 \\\\ x &=& \dfrac{-1\pm\sqrt{1^2-4\cdot (-1)}} {2} \\ &=& \dfrac{-1\pm\sqrt{5}} {2} \\\\ \mathbf{x_1} &=& \mathbf{ \dfrac{-1+\sqrt{5}} {2}} \\ r &=& -x_1 \\ &=& -\dfrac{-1+\sqrt{5}} {2} \\ &=& \dfrac{1-\sqrt{5}} {2} \\ r &=& -0.61803398875 \quad | \quad -1 < -0.61803398875 < 1 \checkmark \\\\ \mathbf{x_2} &=& \mathbf{ \dfrac{-1-\sqrt{5}} {2}} \\ r &=& -x_2 \\ &=& -\dfrac{-1-\sqrt{5}} {2} \\ &=& \dfrac{ 1+\sqrt{5}} {2} \\ r &=& 1.61803398875 \quad | \quad -1 < 1.61803398875 < 1 \text{ false, no solution!} \\ \hline \end{array}\)
Real solution is \(x=\mathbf{ \dfrac{-1+\sqrt{5}} {2}}\)