We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
45
2
avatar

If sides of a triangle 3,4,5 cm .Find the distance between incentre and circumcentre.

 Nov 11, 2019
 #1
avatar
+1

Triangle
Sides: a = 3 b = 4 c = 5

Area: T = 6
Perimeter: p = 12
Semiperimeter: s = 6
Inradius: r = 1
Circumradius: R = 2.5
The distance between the incenter and the circumcenter is sqrt(R(R-2r)), where R is the circumradius and r is the inradius, a result known as the Euler triangle formula.
The Distance=Sqrt(2.5*(2.5 - 2*1))
                        =Sqrt(2.5*(0.5))
                        =Sqrt(1.25)
                        =1.118 cm - distance between incenter and circumcenter.

 Nov 11, 2019
 #2
avatar+105411 
+1

Let  A  = (0, 0)

Let B  =  (0, 3)

Let C  =  (4, 0)

 

We can find the incenter  thusly  :

 

[ Length of side opposite A * xcoordinate of A + Length of side opposite B * x coordinate of B + Length of side opposite C*xcoordinate of C ] ,  [ Length of side opposite A * ycoordinate of A + Length of side opposite B * y coordinate of B + Length of side opposite C*ycoordinate of C ]

 

 ( [(5(0)  + 0 (4) + 4(3)] / 12  , [5(0)  + 3(4)  + 0(3) ] / 12  )  =

 

(1 , 1 )

 

In a right triangle.....the circumcenter is located at the midpoint of the hypotenuse....this point is

 

(2, 3/2)

 

So....the distance between the incenter and the circumcenter is

 

sqrt  [ ( 2 - 1)^2  + (3/2 - 1)^2  ]  =

 

sqrt [ 1*2  +  (1/2)^2  ] =

 

sqrt [ 1 + 1/4  ]  =

 

sqrt  [ 5/4]   =   sqrt  (5)  / 2

 

 

cool cool cool

 Nov 11, 2019

6 Online Users

avatar
avatar
avatar