+0  
 
0
32
1
avatar

If the arithmetic mean of x and y is equal to the product of sqrt(2) and the geometric mean of x and y, then find y/x.

 May 15, 2020
 #1
avatar+111321 
+1

[x + y]  / 2   = √2 * √(xy)        square both sides

 

[ x^2 + 2xy + y^2 ] / 4  = 2 (xy)

 

x^2  + 2xy  + y^2  =  8 (xy)

 

x^2  + y^2  =  6(xy)      divide through by   x^2

 

1  + (y^2) / (x^2)  =  6(y/x)       rearrange  as

 

(y^2/x^2)  - 6(y/x)  +  1  =   0

 

(y/x)^2  - 6(y/x) + 1  =  0

 

Let   (y/x)   =  a

 

a^2   - 6a  + 1    =  0

 

a^2  - 6a    =   -1       complete the square on a

 

a^2 -6a + 9  = -1 + 9

 

(a - 3)^2   = 8       take both roots

 

a  -3   =  ±√ 8

 

a - 3  =  ±2√2

 

a =  3 ± 2√2

 

(y/x)  =    3 ± 2√2

 

 

cool cool cool

 May 15, 2020

7 Online Users

avatar