We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
184
1
avatar+45 

What is the radius of the circle inscribed in triangle ABC if AB=22, AC=12, BC=14? Express your answer in simplest radical form.

 Aug 13, 2018
 #1
avatar+22180 
+2

What is the radius of the circle inscribed in triangle ABC if AB=22, AC=12, BC=14?

Express your answer in simplest radical form.

 

\(\text{Let $c = AB = 22 $} \\ \text{Let $b = AC = 12 $} \\ \text{Let $a = BC = 14 $} \\ \text{Let $r =$ radius of the circle inscribed. }\)

 

Formula:

\(\begin{array}{|rcll|} \hline \displaystyle r = \sqrt{ \dfrac{(s-a)(s-b)(s-c)}{s} } \qquad \text{ with } \qquad s=\dfrac{a+b+c}{2} \\ \hline \end{array}\)

 

\(\mathbf{s = \ ?}\)

\(\begin{array}{|rcll|} \hline s &=& \dfrac{14+12+22}{2} \\\\ &=& \dfrac{48}{2} \\\\ &=& 24 \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline s-a &=& 24- 14 \\ &=& 10 \\\\ s-b &=& 24 - 12 \\ &=& 12 \\\\ s-c &=& 24 - 22 \\ &=& 2 \\ \hline \end{array}\)

 

\(\mathbf{r = \ ?} \)

\(\begin{array}{|rcll|} \hline r &=& \sqrt{ \dfrac{(s-a)(s-b)(s-c)}{s} } \\\\ &=& \sqrt{ \dfrac{10\cdot 12 \cdot 2}{24} } \\\\ &=& \sqrt{ \dfrac{10\cdot 24}{24} } \\\\ &=& \sqrt{ 10 } \\ \hline \end{array}\)

 

The radius of the cricle inscribed in triangle ABC is \(\sqrt{10}\)

 

laugh

 Aug 13, 2018

15 Online Users