+0  
 
+1
50
1
avatar+45 

What is the radius of the circle inscribed in triangle ABC if AB=22, AC=12, BC=14? Express your answer in simplest radical form.

anomy  Aug 13, 2018
 #1
avatar+20009 
+2

What is the radius of the circle inscribed in triangle ABC if AB=22, AC=12, BC=14?

Express your answer in simplest radical form.

 

\(\text{Let $c = AB = 22 $} \\ \text{Let $b = AC = 12 $} \\ \text{Let $a = BC = 14 $} \\ \text{Let $r =$ radius of the circle inscribed. }\)

 

Formula:

\(\begin{array}{|rcll|} \hline \displaystyle r = \sqrt{ \dfrac{(s-a)(s-b)(s-c)}{s} } \qquad \text{ with } \qquad s=\dfrac{a+b+c}{2} \\ \hline \end{array}\)

 

\(\mathbf{s = \ ?}\)

\(\begin{array}{|rcll|} \hline s &=& \dfrac{14+12+22}{2} \\\\ &=& \dfrac{48}{2} \\\\ &=& 24 \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline s-a &=& 24- 14 \\ &=& 10 \\\\ s-b &=& 24 - 12 \\ &=& 12 \\\\ s-c &=& 24 - 22 \\ &=& 2 \\ \hline \end{array}\)

 

\(\mathbf{r = \ ?} \)

\(\begin{array}{|rcll|} \hline r &=& \sqrt{ \dfrac{(s-a)(s-b)(s-c)}{s} } \\\\ &=& \sqrt{ \dfrac{10\cdot 12 \cdot 2}{24} } \\\\ &=& \sqrt{ \dfrac{10\cdot 24}{24} } \\\\ &=& \sqrt{ 10 } \\ \hline \end{array}\)

 

The radius of the cricle inscribed in triangle ABC is \(\sqrt{10}\)

 

laugh

heureka  Aug 13, 2018

11 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.