P is a point outside of equilateral triangle ABC. PA=3, PB=4, PC=5. Find AB.
P is a point outside of equilateral triangle ABC. PA=3, PB=4, PC=5. Find AB.
cos rule:
42=32+x2−2∗3∗xcos(y)16=9+x2−6xcos(y)6xcos(y)=−16+9+x26xcos(y)=x2−7cos(y)=x2−76xsin2(y)=1−cos2(y)sin2(y)=1−(x2−7)236x2sin2(y)=36x2−(x2−7)236x2sin(y)=√36x2−(x2−7)26xsin(y)=√36x2−x4+14x2−496xsin(y)=16x√50x2−x4−49
cos rule:
52=32+x2−2∗3xcos(60∘+y)25=9+x2−6xcos(60∘+y)6xcos(60∘+y)=x2−16cos(60∘+y)=x2−166xcos(60∘)cos(y)−sin(60∘)sin(y)=x2−166x12cos(y)−√32sin(y)=x2−166x|×2cos(y)−√3sin(y)=2x2−326xx2−76x−√316x√50x2−x4−49=2x2−326x|×6xx2−7−√3√50x2−x4−49=2x2−32−√3√50x2−x4−49=x2−25square both sides3(50x2−x4−49)=(x2−25)2150x2−3x4−147=x4−50x2+625…4x4−200x2+772=0|:4x4−50x2+193=0x2=50±√502−4∗1932x2=50±√4∗4322x2=50±2√4322x2=25±√432x=√25±√432x=√25−√432point outside the trianglex=√4.21539030917x=2.05314157066
AB is ≈2.05