We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
360
1
avatar+1193 

If the two roots of the quadratic $7x^2+3x+k$ are $\frac{-3\pm i\sqrt{299}}{14}$, what is $k$?

 Jun 10, 2018
 #1
avatar+22343 
+1

If the two roots of the quadratic $7x^2+3x+k$ are $\frac{-3\pm i\sqrt{299}}{14}$,

what is $k$?

\(\begin{array}{|rcll|} \hline 7x^2+3x+k &=& 0 \quad | \quad : 7 \\\\ x^2+\frac37x+ \underbrace{\frac{k}{7}}_{=x_1x_2} &=& 0 \\\\ \dfrac{k}{7} &=& x_1x_2 \quad | \quad x_1 = \dfrac{-3+ i\sqrt{299}}{14} \quad x_2 = \dfrac{-3- i\sqrt{299}}{14} \\\\ \dfrac{k}{7} &=& \dfrac{\left(-3+ i\sqrt{299}\right) }{14}\cdot \dfrac{\left(-3- i\sqrt{299}\right) }{14} \\\\ \dfrac{k}{7} &=& \dfrac{(-3+ i\sqrt{299})(-3- i\sqrt{299}) }{14\cdot 14} \\\\ \dfrac{k}{7} &=& \dfrac{9- i^2\cdot 299 }{14\cdot 14} \quad | \quad i^2 = -1 \\\\ \dfrac{k}{7} &=& \dfrac{9- (-1)\cdot 299 }{14\cdot 14} \\\\ \dfrac{k}{7} &=& \dfrac{9+\cdot 299 }{14\cdot 14} \\\\ \dfrac{k}{7} &=& \dfrac{308}{14\cdot 14} \\\\ k &=& \dfrac{7\cdot 308}{14\cdot 14} \\\\ k &=& \dfrac{7\cdot 22}{14} \\\\ k &=& \dfrac{ 22}{2} \\\\ \mathbf{k} & \mathbf{=} & \mathbf{11} \\ \hline \end{array}\)

 

 

laugh

 Jun 11, 2018

8 Online Users