+0  
 
0
120
1
avatar

The perimeter of a rhombus is 48 and the sum of the lengths of its diagonals is 26.

What is the area of the rhombus?

 

 Jun 21, 2020
 #1
avatar+10322 
+1

The perimeter of a rhombus is 48 and the sum of the lengths of its diagonals is 26.
What is the area of the rhombus?

 

Hello Guest!

 

A diagonal is x.

\((\frac{x}{2})^2+(\frac{26-x}{2}^2)=(\frac{48}{4})^2\)

\(\frac{x^2}{4}+\frac{676-52x+x^2}{4}=\frac{2304}{16}=\frac{576}{4}\\\ x^2+676-52x+x^2=576\\ 2x^2-52x+100=0\\x^2-26x+50=0\)

\(x=13\pm\sqrt{169-50}\\ x=13\pm\sqrt{119}\)

\(x_1=23.91\\x_2=2.091\)

 

\(A=4\times (\frac{x}{2}\cdot\frac{26-x}{2})/2\\ A=4\times \frac{2.901\cdot (26-2.901)}{2\cdot 2\cdot2}\)

\(A=25\)

 

\(A=4\times \frac{x(26-x)}{2\cdot 2\cdot 2}\\ A=4\times \frac{23.91\cdot (26-23.91)}{2\cdot 2\cdot 2}\)

\(A=25\)

laugh  !

 Jun 21, 2020
edited by asinus  Jun 21, 2020
edited by asinus  Jun 21, 2020
edited by asinus  Jun 21, 2020
edited by asinus  Jun 21, 2020

47 Online Users

avatar
avatar
avatar