+0  
 
-2
73
3
avatar

Given an obtuse triangle ABC with \(\overline{AB}\) past B to a point D such that  \(\overline{CD}\) is perpendicular to  \(\overline{AB}\) . Let F be the point on line segment  \(​​​​\overline{AC}\) such that  \(\overline{BF}\) is perpendicular to  \(\overline{AB}\) , and extend  \(\overline{BF}\) past F to a point E such that  \(​​\overline{BE}\) is perpendicular to  \(\overline{CE}\). Given that  \(\angle ECF = \angle BCD\), show that  \(\triangle ABC \sim \triangle BFC\) .

 May 12, 2020
 #1
avatar
0

This looks hard.  Is there a diagram?

 May 12, 2020

39 Online Users

avatar
avatar
avatar