We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
102
1
avatar

\(\)In acute triangle \(ABC \),\( \angle A = 68^\circ.\) Let \(O\) be the circumcenter of triangle \(ABC\). Find\( \angle OBC\), in degrees.

 Feb 18, 2019

Best Answer 

 #1
avatar+23044 
+4

In acute triangle \(ABC,\ \angle A = 68^\circ\).

Let be the circumcenter of triangle \(ABC\).
Find, \(\angle OBC\) in degrees.

 

\(\text{Let $\angle OBC = {\color{red}x}$ } \)

\(\begin{array}{|rcll|} \hline 2{\color{red}x} + 2{\color{blue}y} + 2{\color{green}z} &=& 180^{\circ} \quad | \quad : 2 \\ {\color{red}x} + {\color{blue}y} + {\color{green}z} &=& 90^{\circ} \quad | \quad {\color{blue}y} + {\color{green}z} = \angle A \\ {\color{red}x} + A &=& 90^{\circ} \\ {\color{red}x} &=& 90^{\circ} - A \quad | \quad A = 68^{\circ} \\ {\color{red}x} &=& 90^{\circ} - 68^{\circ} \\ {\color{red}x} &=& 22^{\circ} \\ \hline \end{array}\)

 

\(\text{$\angle OBC$ in degrees is $22^{\circ}$}\)

 

laugh

 Feb 19, 2019
 #1
avatar+23044 
+4
Best Answer

In acute triangle \(ABC,\ \angle A = 68^\circ\).

Let be the circumcenter of triangle \(ABC\).
Find, \(\angle OBC\) in degrees.

 

\(\text{Let $\angle OBC = {\color{red}x}$ } \)

\(\begin{array}{|rcll|} \hline 2{\color{red}x} + 2{\color{blue}y} + 2{\color{green}z} &=& 180^{\circ} \quad | \quad : 2 \\ {\color{red}x} + {\color{blue}y} + {\color{green}z} &=& 90^{\circ} \quad | \quad {\color{blue}y} + {\color{green}z} = \angle A \\ {\color{red}x} + A &=& 90^{\circ} \\ {\color{red}x} &=& 90^{\circ} - A \quad | \quad A = 68^{\circ} \\ {\color{red}x} &=& 90^{\circ} - 68^{\circ} \\ {\color{red}x} &=& 22^{\circ} \\ \hline \end{array}\)

 

\(\text{$\angle OBC$ in degrees is $22^{\circ}$}\)

 

laugh

heureka Feb 19, 2019

48 Online Users

avatar
avatar
avatar