We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
64
1
avatar

In triangle ABC, M is the midpoint of BC, AB=12, and AC=16. Points E and F are taken on AC and AB respectively, and EF and AM intersect at G. If AE=2AF then what is EG/GF?

 Oct 13, 2019
 #1
avatar+23317 
+2

In triangle ABC,
M is the midpoint of BC, AB=12, and AC=16.
Points E and F are taken on AC and AB respectively, and EF and AM intersect at G.
If AE=2AF then what is EG/GF?

 

\(\text{Let $\angle EAG=\epsilon_1$ } \\ \text{Let $\angle AMC=\epsilon_2$ } \\ \text{Let $\angle AGE=\epsilon_3$ } \\ \text{Let $\angle GAF=\delta_1$ } \\ \text{Let $\angle AMB=\delta_2=180^\circ-\epsilon_2 $ } \\ \text{Let $\angle AGF=\delta_3=180^\circ-\epsilon_3 $ } \\ \text{Let $EG=\mathbf{x}$ } \\ \text{Let $GF=\mathbf{y}$ } \\ \text{Let $AF=f$ } \\ \text{Let $AE=2AF=2f$ } \)

 

1. sin-rule

\(\begin{array}{|lrcll|} \hline (1) & \dfrac{\sin(\epsilon_1)}{\dfrac{CB}{2}} &=& \dfrac{\sin(\epsilon_2)}{16} \\\\ \hline & \dfrac{\sin(\delta_1)}{\dfrac{CB}{2}} &=& \dfrac{\sin(180^\circ-\epsilon_2)}{12} \\\\ (2) & \dfrac{\sin(\delta_1)}{\dfrac{CB}{2}} &=& \dfrac{\sin(\epsilon_2)}{12} \\\\ \hline & \dfrac{CB}{2}\sin(\epsilon_2) = 16\sin(\epsilon_1)&=& 12\sin(\delta_1) \\ & 16\sin(\epsilon_1)&=& 12\sin(\delta_1) \\\\ & \dfrac{\sin(\epsilon_1)}{\sin(\delta_1)} &=& \dfrac{12}{16} \\\\ (3) & \mathbf{ \dfrac{\sin(\epsilon_1)}{\sin(\delta_1)} } &=& \mathbf{ \dfrac{3}{4} } \\ \hline \end{array} \)

 

2. sin-rule

\(\begin{array}{|lrcll|} \hline (4) & \dfrac{\sin(\epsilon_1)}{x} &=& \dfrac{\sin(\epsilon_3)}{2f} \\\\ \hline & \dfrac{\sin(\delta_1)}{y} &=& \dfrac{\sin(180^\circ-\epsilon_3)}{f} \\\\ (5) & \dfrac{\sin(\delta_1)}{y} &=& \dfrac{\sin(\epsilon_3)}{f} \\\\ \hline & \dfrac{\sin(\epsilon_3)}{f} = \dfrac{2\sin(\epsilon_1)}{x} &=& \dfrac{\sin(\delta_1)}{y} \\\\ &\dfrac{x}{y} &=& 2\cdot \dfrac{\sin(\epsilon_1)}{\sin(\delta_1)} \quad | \quad \dfrac{\sin(\epsilon_1)}{\sin(\delta_1)} = \dfrac{3}{4} \\\\ &\dfrac{x}{y} &=& 2\cdot \dfrac{3}{4} \\\\ & \mathbf{ \dfrac{x}{y} } &=& \mathbf{ \dfrac{3}{2} } \\ \hline \end{array}\)

 

\(\mathbf{\dfrac{EG}{GF} = \dfrac32}\)

 

laugh

 Oct 15, 2019

26 Online Users

avatar
avatar