+0  
 
-1
80
1
avatar+150 

                                                                                                                           ___

Points A and B are on parabola y=3x^2-5x-3, and the origin is the midpoint of AB. Find the square of the length of

___

AB.

 

 

 

___

AB means line AB

xXxTenTacion  Jul 12, 2018
 #1
avatar+88836 
+2

y = 3x^2  - 5x  - 3

 

Let   A  = (u, 3u^2 - 5u  -3)

Let B =   (v, 3v^2 - 5v - 3)

 

Using the midpoint, rule, we have that

[ u + v ] / 2  = 0         and      [ 3u^2 - 5u  - 3 + 3v^2 - 5v  - 3 ] / 2  = 0    (2)

u + v  = 0 

v = -u    (1)

 

Sub (1)  inot (2)  and we have that

[3u^2 - 5u - 3 + 3 (-u)2 - 5(-u) - 3 ] /  2   =  0            multiply  through by 2  and simplify

6u^2  - 6   = 0      divide through by 6

u^2  - 1   = 0     factor

(u + 1) ( u -1)  = 0

Set both factors to 0  and solve for  u  ⇒    u = -1    or  u  = 1

 

If  u   = -1    then the associated  y  coordinate is  3(1)^2 - 5(-1) - 3   = 5

So A  = (-1, 5)

And the x  coordinate  of  B  is  -u =  1  and  the y coordinate of  B is 3(1)^2 - 5(1) - 3 = -5

So, in this case B  = (1, -5)

 

The  slope of this line through A and B is    [ -5 - 5]  / [ 1 - -1] =  -10/2  = -5

And the equation of this line is

y  = -5 (x -1) - 5

y = -5x 

 

So....the  distance between  A  and B   is  √ [ -5 - 5)^2  + ( -1 -1)^2 ]  = √[ 10^2 + 2^2] = √104  

So....the square of the length of AB is just 104

Note that if u  = 1, we have the same results...A and  B are  just "switched"

See the graph, here :  https://www.desmos.com/calculator/e2uvdwwhl3

 

cool cool cool

CPhill  Jul 12, 2018
edited by CPhill  Jul 12, 2018

60 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.