We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
77
3
avatar

A particle is moving so that its position at time \(t\) is given by the parametric equations \(\begin{align*} x &= 5\sin(-2t) \\ y &= 5\cos(2t). \end{align*}\) What is the speed of the particle?

 Nov 5, 2019
 #1
avatar+23575 
+3

A particle is moving so that its position at time  is given by the parametric equations  \(\begin{align*} x &= 5\sin(-2t) \\ y &= 5\cos(2t). \end{align*}\)
What is the speed of the particle?

 

\(\begin{array}{|rcll|} \hline \begin{align*} x &= 5\sin(-2t) & y &= 5\cos(2t) \\\\ \dot{x} &= (-2)\cdot 5\cos(-2t) & \dot{y} &= 2\cdot 5\cdot (-\sin(2t)) \\ &= -10\cdot \cos(-2t) & &= -10\cdot \sin(2t) \\ &= -10\cdot \cos(2t) \\ \end{align*} \\ \hline \end{array} \)

 

speed

\(\begin{array}{|rcll|} \hline v(t) &=& \sqrt{\dot{x}^2+\dot{y}^2} \\ &=& \sqrt{\Big(-10\cdot \cos(2t)\Big)^2+\Big(-10\cdot \sin(2t)\Big)^2} \\ &=& \sqrt{100\cdot \cos^2(2t)+100\cdot \sin^2(2t) } \\ &=& 10\cdot \sqrt{\cos^2(2t)+\sin^2(2t) } \quad | \quad \cos^2(2t)+\sin^2(2t) = 1 \\ &=& 10\cdot 1 \\ \mathbf{v(t)} &=& \mathbf{10} \\ \hline \end{array} \)

 

laugh

 Nov 5, 2019
 #2
avatar+8725 
+2

Thank you heureka!

See http://mathworld.wolfram.com/ParametricEquations.html

There it is explained.

laugh  !

 Nov 5, 2019
 #3
avatar+23575 
+1

Thank you, asinus !

 

laugh

heureka  Nov 6, 2019

5 Online Users

avatar