+0  
 
0
112
1
avatar

Let $S$ be the set of all nonzero real numbers. Let $f : S \to S$ be a function such that \[f(x) + f(y) = f(xyf(x +  y))\]for all $x,$ $y \in S$ such that $x + y \neq 0.$  Let $n$ be the number of possible values of $f(4),$ and let $s$ be the sum of all possible values of $f(4).$ Find $n \times s.$

 May 6, 2021
 #1
avatar
0

n * s = 8.

 May 23, 2021

23 Online Users

avatar