+0  
 
+2
10
1
avatar+280 

Let $ABCD$ be a regular tetrahedron. Let $E$, $F$, $G,$ $H$ be the centers of faces $BCD$, $ACD$, $ABD$, $ABC$, respectively. The volume of pyramid $DEFG$ is $18.$ Find the volume of pyramid $EFGH$

 May 23, 2024
 #1
avatar+1926 
+1

This isn't too hard of a question once you realize how to do it!

\(\Delta EFG \cdot \frac{2h}{3}=18\\ \Delta EFG =\frac{3\cdot 18}{2h}\\ [{EFGH}]=\Delta EFG\cdot \frac{1}{3}h\\ [{EFGH}]=\frac{3\cdot 18}{2h}\cdot \frac{1}{3}h\\ [{EFGH}]=9\)

 

The key is realizing that the pyramid is just 1/2 of EFG times the height!

 

Thanks! :)

 May 23, 2024

1 Online Users