We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
79
4
avatar+1177 

If z^2 + z + 1 = 0, find \(z^{49} + z^{50} + z^{51} + z^{52} + z^{53}\).

 Apr 15, 2019
 #1
avatar+57 
+1

Hint:

 

You're trying to find \(z^{53}+z^{52}+z^{51}+z^{50}+z^{49}\), so factor out \(z^{49}\) to get \(z^{49}(z^4+z^3+z^2+z+1)\). We know what \(z^2+z+1\) is, so substitute it in. You now have\(z^{49}(z^4+z^3)\), which can be written as \(z^{51}(z^2+z)\). Now, we know that \(z^2 + z + 1=0\), so \(z^2+z=-1\). Substituting, we get \(-z^{51}\).

 

Continue from here.

 

-24

 Apr 15, 2019
edited by TwentyFour  Apr 15, 2019
edited by TwentyFour  Apr 15, 2019
 #2
avatar+101103 
+1

Very nice "24".....!!!!

 

 

cool cool cool

CPhill  Apr 15, 2019
 #3
avatar+22279 
+1

If

\(z^2 + z + 1 = 0\),

find \(z^{49} + z^{50} + z^{51} + z^{52} + z^{53}\).

 

\(\begin{array}{|rcll|} \hline \left(z^2 + z + 1 \right)^2 &=& 1+z^2+z^4+2z+2z^2 +2z^3 \\ \left(z^2 + z + 1 \right)^2 &=& 1+z^2+z^4+2z(z^2 + z + 1) \quad | \quad z^2 + z + 1 = 0 \\ \mathbf{0} &\mathbf{=} & \mathbf{1+z^2+z^4} \quad | \quad 0 = z^2 + z + 1 \\ z^2 + z + 1 & = & 1+z^2+z^4 \\ z & = & z^4 \quad | \quad : z \\ 1 & = & z^3 \\ \mathbf{z^3} &\mathbf{=} & \mathbf{1} \\ \hline \end{array} \)

 

\(\begin{array}{|lcll|} \hline z^4 = z^3z= 1\cdot z &=& z \\ z^5 = z^3z^2= 1\cdot z^2 &=& z^2 \\ z^6 = \left(z^3\right)^2= 1^2 &=& 1 \\ \hline \end{array}\)

 

In general:

\(\begin{array}{|lcll|} \hline z^{0+3n} = 1 \\ z^{1+3n} = z \\ z^{2+3n} = z^2 \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline z^{49} = z^{1+3\cdot16} &=& z \\ z^{50} = z^{2+3\cdot16} &=& z^2 \\ z^{51} = z^{0+3\cdot17} &=& 1 \\ z^{52} = z^{1+3\cdot17} &=& z \\ z^{53} = z^{2+3\cdot17} &=& z^2 \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline z^{49} + z^{50} + z^{51} + z^{52} + z^{53} &=& z+z^2+1+z+z^2 \quad | \quad z^2 + z + 1 = 0 \\ z^{49} + z^{50} + z^{51} + z^{52} + z^{53} &=& z+z^2 \quad | \quad z^2 + z = -1 \\ \mathbf{z^{49} + z^{50} + z^{51} + z^{52} + z^{53}} & \mathbf{=} & \mathbf{-1} \\ \hline \end{array}\)

 

laugh

 Apr 16, 2019
 #4
avatar+7531 
0

\(z^2+z+1 = 0\\ (z-1)(z^2+z+1)=0\\ z^3 = 1, z \neq 1\\ z = -\dfrac{1}{2} + \dfrac{i\sqrt3}{2}\\ z^2 = -\dfrac{1}{2} - \dfrac{i\sqrt3}{2}\\\)

 

 

\(z^{49} + z^{50} + z^{51} + z^{52} + z^{53}\\ =z + z^2 + 1 + z + z^2\\ =1+2(-\dfrac{1}{2} + \dfrac{i\sqrt3}{2} + -\dfrac{1}{2} - \dfrac{i\sqrt3}{2})\\ =1 + 2(-1)\\ = -1\)

.
 Apr 18, 2019

10 Online Users

avatar
avatar
avatar