Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
963
4
avatar+1245 

If z^2 + z + 1 = 0, find z49+z50+z51+z52+z53.

 Apr 15, 2019
 #1
avatar+62 
+1

Hint:

 

You're trying to find z53+z52+z51+z50+z49, so factor out z49 to get z49(z4+z3+z2+z+1). We know what z2+z+1 is, so substitute it in. You now havez49(z4+z3), which can be written as z51(z2+z). Now, we know that z2+z+1=0, so z2+z=1. Substituting, we get z51.

 

Continue from here.

 

-24

 Apr 15, 2019
edited by TwentyFour  Apr 15, 2019
edited by TwentyFour  Apr 15, 2019
 #2
avatar+130475 
+1

Very nice "24".....!!!!

 

 

cool cool cool

CPhill  Apr 15, 2019
 #3
avatar+26396 
+1

If

z2+z+1=0,

find z49+z50+z51+z52+z53.

 

(z2+z+1)2=1+z2+z4+2z+2z2+2z3(z2+z+1)2=1+z2+z4+2z(z2+z+1)|z2+z+1=00=1+z2+z4|0=z2+z+1z2+z+1=1+z2+z4z=z4|:z1=z3z3=1

 

z4=z3z=1z=zz5=z3z2=1z2=z2z6=(z3)2=12=1

 

In general:

z0+3n=1z1+3n=zz2+3n=z2

 

z49=z1+316=zz50=z2+316=z2z51=z0+317=1z52=z1+317=zz53=z2+317=z2

 

z49+z50+z51+z52+z53=z+z2+1+z+z2|z2+z+1=0z49+z50+z51+z52+z53=z+z2|z2+z=1z49+z50+z51+z52+z53=1

 

laugh

 Apr 16, 2019
 #4
avatar+9675 
0

z2+z+1=0(z1)(z2+z+1)=0z3=1,z1z=12+i32z2=12i32

 

 

z49+z50+z51+z52+z53=z+z2+1+z+z2=1+2(12+i32+12i32)=1+2(1)=1

.
 Apr 18, 2019

1 Online Users