Hint:
You're trying to find z53+z52+z51+z50+z49, so factor out z49 to get z49(z4+z3+z2+z+1). We know what z2+z+1 is, so substitute it in. You now havez49(z4+z3), which can be written as z51(z2+z). Now, we know that z2+z+1=0, so z2+z=−1. Substituting, we get −z51.
Continue from here.
-24
If
z2+z+1=0,
find z49+z50+z51+z52+z53.
(z2+z+1)2=1+z2+z4+2z+2z2+2z3(z2+z+1)2=1+z2+z4+2z(z2+z+1)|z2+z+1=00=1+z2+z4|0=z2+z+1z2+z+1=1+z2+z4z=z4|:z1=z3z3=1
z4=z3z=1⋅z=zz5=z3z2=1⋅z2=z2z6=(z3)2=12=1
In general:
z0+3n=1z1+3n=zz2+3n=z2
z49=z1+3⋅16=zz50=z2+3⋅16=z2z51=z0+3⋅17=1z52=z1+3⋅17=zz53=z2+3⋅17=z2
z49+z50+z51+z52+z53=z+z2+1+z+z2|z2+z+1=0z49+z50+z51+z52+z53=z+z2|z2+z=−1z49+z50+z51+z52+z53=−1