We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
117
1
avatar

What fraction of the form \(\frac{A}{x + 3}\) can be added to \(\frac{6x}{x^2 + 2x - 3}\) so that the result reduces to a fraction of the form \(\frac{B}{x - 1}\)? Here A and B are real numbers. Give the value of A as your answer.

 Mar 10, 2019
 #1
avatar+5662 
+1

\(\dfrac{A}{x+3}+\dfrac{6x}{x^2+2x-3}=\dfrac{B}{x-1}\\ \dfrac{A}{x+3}+\dfrac{6x}{(x+3)(x-1)}=\dfrac{B}{x-1}\\ \dfrac{A(x-1)+6x}{(x+3)(x-1)}=\dfrac{B(x+3)}{(x+3)(x-1)}\)

 

\((A+6)x-A=Bx + 3B\)

 

\(A+6 = B\\ -A = 3B\\ \text{Solve these two equations for }A, B\)

.
 Mar 10, 2019

4 Online Users

avatar