+0  
 
0
458
2
avatar+62 

We have a right triangle, triangle ABC where the legs AB and AC have lengths 6 and 3sqrt3 respectively. Medians AM and CN meet at point P. What is the length of CP?

 Jul 30, 2017
 #1
avatar+21350 
+1

We have a right triangle, triangle ABC where the legs AB and AC have lengths 6 and 3sqrt3 respectively.

Medians AM and CN meet at point P.

What is the length of CP?

 

Let \(\vec{A} = \binom{0}{0}\)
Let \(\vec{B} = \binom{6}{0}\)
Let \(\vec{C} = \binom{0}{3\sqrt{3}}\)

 

\(\mathbf{\vec{P} = \ ?}\)

\(\begin{array}{|rcll|} \hline \vec{P} &=& \frac13 ( \vec{A}+\vec{B}+\vec{C} ) \\ \vec{P} &=& \frac13 \left( \binom{0}{0}+\binom{6}{0}+\binom{0}{3\sqrt{3}} \right) \\ \vec{P} &=& \frac13 \cdot \binom{0+6+0}{0+0+3\sqrt{3} } \\ \vec{P} &=& \frac13 \cdot \binom{6}{3\sqrt{3} } \\ \vec{P} &=& \dbinom{2}{ \sqrt{3} } \\ \hline \end{array}\)

 

CP = ?

\(\begin{array}{|rcll|} \hline CP &=& |~\vec{C}-\vec{P}~| \\ CP &=& |~\binom{0}{3\sqrt{3}}-\binom{2}{ \sqrt{3} }~| \\ CP &=& |~\binom{0-2}{3\sqrt{3}-\sqrt{3} } ~| \\ CP &=& |~\binom{-2}{2\sqrt{3} } ~| \\ CP &=& \sqrt{(-2)^2+(2\sqrt{3})^2 } \\ CP &=& \sqrt{4+ 4\cdot3 } \\ CP &=& \sqrt{4+ 12 } \\ CP &=& \sqrt{16} \\ \mathbf{ CP } & \mathbf{=} & \mathbf{4} \\ \hline \end{array} \)

 

 

laugh

 Jul 31, 2017
edited by heureka  Jul 31, 2017
edited by heureka  Jul 31, 2017
 #2
avatar
+1

the centroid always divide the median in 2:1 ratio 

so,cp:pm=2:1

cm^2=9+27

cm=6

cp=6(2/3)=4

 Jul 31, 2017

12 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.