We have a right triangle, triangle ABC where the legs AB and AC have lengths 6 and 3sqrt3 respectively. Medians AM and CN meet at point P. What is the length of CP?
We have a right triangle, triangle ABC where the legs AB and AC have lengths 6 and 3sqrt3 respectively.
Medians AM and CN meet at point P.
What is the length of CP?
Let →A=(00)
Let →B=(60)
Let →C=(03√3)
→P= ?
→P=13(→A+→B+→C)→P=13((00)+(60)+(03√3))→P=13⋅(0+6+00+0+3√3)→P=13⋅(63√3)→P=(2√3)
CP = ?
CP=| →C−→P |CP=| (03√3)−(2√3) |CP=| (0−23√3−√3) |CP=| (−22√3) |CP=√(−2)2+(2√3)2CP=√4+4⋅3CP=√4+12CP=√16CP=4