We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
-1
146
1
avatar+1196 

In right triangle \(ABC\) with \(\angle B = 90^\circ\), we have \(2\sin A = 3\cos A\). What is \(\tan A\)?

 Jun 28, 2019
 #1
avatar+778 
+4

STEP 1.

 

So, we have a right triangle \(\triangle {ABC}\) with \(\angle B = 90^\circ\).

 

Let sides \({AC} = a\)\(AB = b\). and \(CB = c\).

 

\(2\sin A\) is equal to \(2(\frac{c}{a})\), and \(3\cos A \) is equal to \(3(\frac{b}{a})\)

 

Therfore, 

 \(2(\frac{c}{a}) = 3(\frac{b}{a})\),

 

\(\frac{2c}{a} = \frac{3b}{a}\),

 

\(2c = 3b\).

 

STEP 2.

 

\(\tan A\) is equal to \(\frac{c}{b}\).

 

We can substitute \(c\) for \(\frac{3b}{2}\).

 

\(\tan A\) \(=\) \(\frac{\frac{3b}{2}}{b}\),

 

\(\tan A\) \(=\) \(\frac{3b}{2} \times \frac{1}{b}\),

 

\(\tan A\) \(=\) \(\boxed{\frac{3}{2}}\)

.
 Jun 28, 2019

7 Online Users