+0  
 
0
819
3
avatar+103 

find the instanteneous velocity in each of the following movements when t=5s:

 

I)\(x=t^2+5t+2\)

II)\(x=t/2+3\)

III)\(x = t^2/4+2\)

IV)\(x =t^2+3t/4\)

 Oct 1, 2015
 #1
avatar+33657 
0

Velocity is rate of change of distance, so, if x is distance, velocity,v is given by:

 

l.   2t + 5

ll.  1/2

lll.  t/2

lV. 2t + 3/4

 

Just plug in t = 5 (where approriate) to get the velocities.

 Oct 1, 2015
edited by Alan  Oct 1, 2015
 #2
avatar+103 
0

could you show the entire process? i also forgot to mention that lim is deltaT→0

 Oct 1, 2015
 #3
avatar+33657 
0

I'll do the first one for you:

 

x = t^2 + 5t + 2

 

v = Limitdt→0 (xt+dt - xt)/dt             I'll use dt instead of writing out deltat all the time.

so

Put t+dt into the expression for x to get the xt+dt part

v = Limitdt→0  ([t+dt]^2 + 5[t+dt] + 2 - t^2 - 5t - 2])/dt 

 

Expand the terms in brackets

v = Limitdt→0  (t^2 + 2tdt + dt^2 + 5t + 5dt + 2 - t^2 - 5t - 2])/dt 

 

Subtract terms where appropriate

v = Limitdt→0  (2tdt + dt^2 + 5dt])/dt 

 

Divide numerator by dt

v = Limitdt→0  (2t + dt + 5] 

 

Let dt go to zero and you are left with:

v = 2t + 5 

 

See if you can apply a similar approach with the others.

 Oct 1, 2015

1 Online Users