We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
62
1
avatar

The expression \(\dfrac{25}{\sqrt[5]{25}}\) equals 5 raised to what power?

 May 16, 2019
 #1
avatar+8439 
+3
  \(\dfrac{25}{\sqrt[5]{25}}\) ______  
\(=\qquad\) \(\dfrac{25}{25^{\frac15}}\)

 

 

 

 

because   \(\sqrt[n]{x}\,=\,x^\frac1n\)
\(=\qquad\) \(25^{1-\frac15}\)   because   \(\frac{x^a}{x^b}\,=\,x^{a-b}\)
\(=\qquad\) \(25^{\frac45}\)

 

 

 

because   \(1-\frac15\,=\,\frac55-\frac15\,=\,\frac45\)
\(=\qquad\) \((5^2)^{\frac45}\)   because   \(5^2\,=\,25\)
\(=\qquad\) \(5^{2\cdot\frac45}\)

 

 

 

because   \((x^a)^b\,=\,x^{ab}\)
\(=\qquad\) \(5^{\frac85}\)   because   \(2\cdot\frac45\,=\,\frac85\)
.
 May 16, 2019

17 Online Users

avatar
avatar