We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
224
6
avatar+335 

Find the sum of the base-2 geometric series \(0.1_2-0.01_2+0.001_2-0.0001_2+0.00001_2\ldots\); give your answer as a fraction in which the numerator and denominator are both expressed in base 10.

 

This is urgent!

 Dec 20, 2018

Best Answer 

 #2
avatar+22162 
+11

Find the sum of the base-2 geometric series
\(0.1_2-0.01_2+0.001_2-0.0001_2+0.00001_2\ldots\);
give your answer as a fraction in which the numerator and denominator are both expressed in base 10.

 

\(\begin{array}{|rcll|} \hline 0.1_{2} = 1\cdot 2^{-1} &=& \frac{1}{2} \\ 0.01_{2} = 1\cdot 2^{-2} &=& \frac{1}{4} \\ 0.001_{2} = 1\cdot 2^{-3} &=& \frac{1}{8} \\ 0.0001_{2} = 1\cdot 2^{-4} &=& \frac{1}{16} \\ 0.00001_{2} = 1\cdot 2^{-5} &=& \frac{1}{32} \\ \ldots \\ \hline \end{array}\)

 

Infinite Geometric Series:

\(\begin{array}{|rcll|} \hline s &=& \dfrac{1}{2} - \dfrac{1}{4} + \dfrac{1}{8} - \dfrac{1}{16} + \dfrac{1}{32} \pm \ldots \quad | \quad a=\frac{1}{2},~ r = -\frac{1}{2} \\\\ s &=& \dfrac{a}{1-r} \quad | \quad |r| < 1. \\\\ s &=& \dfrac{\frac{1}{2}}{1- \left(-\frac{1}{2} \right)} \\\\ s &=& \dfrac{\frac{1}{2}}{1+\frac{1}{2}} \\\\ s &=& \dfrac{\frac{1}{2}}{\frac{3}{2}} \\\\ s &=& \dfrac{1}{2} \cdot \dfrac{2}{3} \\\\ \mathbf{s} & \mathbf{=} & \mathbf{\dfrac{1}{3}} \\ \hline \end{array} \)

 

laugh

 Dec 20, 2018
edited by heureka  Dec 20, 2018
edited by heureka  Dec 20, 2018
 #1
avatar+5073 
+1

xxxx

.
 Dec 20, 2018
edited by Rom  Dec 20, 2018
 #2
avatar+22162 
+11
Best Answer

Find the sum of the base-2 geometric series
\(0.1_2-0.01_2+0.001_2-0.0001_2+0.00001_2\ldots\);
give your answer as a fraction in which the numerator and denominator are both expressed in base 10.

 

\(\begin{array}{|rcll|} \hline 0.1_{2} = 1\cdot 2^{-1} &=& \frac{1}{2} \\ 0.01_{2} = 1\cdot 2^{-2} &=& \frac{1}{4} \\ 0.001_{2} = 1\cdot 2^{-3} &=& \frac{1}{8} \\ 0.0001_{2} = 1\cdot 2^{-4} &=& \frac{1}{16} \\ 0.00001_{2} = 1\cdot 2^{-5} &=& \frac{1}{32} \\ \ldots \\ \hline \end{array}\)

 

Infinite Geometric Series:

\(\begin{array}{|rcll|} \hline s &=& \dfrac{1}{2} - \dfrac{1}{4} + \dfrac{1}{8} - \dfrac{1}{16} + \dfrac{1}{32} \pm \ldots \quad | \quad a=\frac{1}{2},~ r = -\frac{1}{2} \\\\ s &=& \dfrac{a}{1-r} \quad | \quad |r| < 1. \\\\ s &=& \dfrac{\frac{1}{2}}{1- \left(-\frac{1}{2} \right)} \\\\ s &=& \dfrac{\frac{1}{2}}{1+\frac{1}{2}} \\\\ s &=& \dfrac{\frac{1}{2}}{\frac{3}{2}} \\\\ s &=& \dfrac{1}{2} \cdot \dfrac{2}{3} \\\\ \mathbf{s} & \mathbf{=} & \mathbf{\dfrac{1}{3}} \\ \hline \end{array} \)

 

laugh

heureka Dec 20, 2018
edited by heureka  Dec 20, 2018
edited by heureka  Dec 20, 2018
 #3
avatar+5073 
+1

why did you switch it to an alternating series?

Rom  Dec 20, 2018
edited by Rom  Dec 20, 2018
edited by Rom  Dec 20, 2018
 #4
avatar+22162 
+9

Hello Rom,

 

i switch it to an alternating series, because the question is: 0.1-  0.012 + 0.0012 - 0.00012 + 0.000012 +- ...

and the answer is a fraction.

 

\(\begin{array}{|rcll|} \hline r &=& \dfrac{ {\color{red}-}\dfrac{1}{4} } { \dfrac{1}{2} } = {\color{red}-}\dfrac{1}{2} \\\\ r &=& \dfrac{ \dfrac{1}{8} } { {\color{red}-}\dfrac{1}{4} } = {\color{red}-}\dfrac{1}{2} \\ \ldots \\ \hline \end{array}\)

 

laugh

heureka  Dec 20, 2018
edited by heureka  Dec 20, 2018
 #5
avatar+5073 
+1

d**n you're right....

 

time for new glasses.

Rom  Dec 20, 2018
 #6
avatar+100513 
0

LOL!!!!....I know the feeling.....!!!

 

 

cool cool cool

CPhill  Dec 20, 2018

7 Online Users

avatar