+0  
 
0
106
1
avatar

For what positive value of c does the line y = -x + c intersect the circle x^2 + y^2 = 1 in exactly one point?

 Nov 26, 2019
 #1
avatar+109563 
+1

For what positive value of c does the line y = -x + c intersect the circle x^2 + y^2 = 1 in exactly one point?

 

Sub   -x + c  in for y in the circular equation and we have that

 

x^2  +  (-x + c)^2  = 1   simplify

 

x^2 + c^2 - 2cx + x^2 = 1

 

2x^2 - 2cx +  (c^2 - 1)  = 0

 

If these intersect in exactly one point, the discriminant must  = 0....so....

 

(2c)^2  - 4(2)(c^2 - 1)  = 0

 

4c^2 - 8c^2 + 8  = 0

 

-4c^2 + 8  = 0      subtract 8 from both sides

 

-4c^2  = -8            divide both sides by -4

 

c^2  = 2                 take the positive root

 

c  = √2

 

Here's a graph : https://www.desmos.com/calculator/lithgiri0g

 

 

cool cool cool

 Nov 26, 2019

65 Online Users

avatar
avatar
avatar