+0  
 
0
174
3
avatar

A polynomial with integer coefficients is of the form \(x^4 + a_3 x^3 + a_2 x^2 + a_1 x + 18.\)You are told that the integer r is a double root of this polynomial. (In other words, the polynomial is divisible by (x - r)^2.) Enter all the possible values of r, separated by commas.

 May 24, 2019
 #1
avatar+108718 
+2

I think that the possible roots are 

 1 and -1 up to  4 times

2 and -2 once

3 an -3 up to twice     -  becasue 9 goes into 18

9 and -9  once

18 and -18 once.

So I think that the possible values of r are,      -3, -1, 1, 3

 May 24, 2019
 #2
avatar+109560 
+1

I agree with Melody

 

Let  m and n be the other two roots

 

This would   imply that    r^2 * m * n  =  18  ⇒   m * n  = 18 / r^2

 

Using the Rational Zeroes Theorem, the divisors of 18  are

 

± [ 1,2, 3, 6, 9 , 18 ]

 

If we have integer coefficients, then m and n must be integers themselves....and their product must also be an integer

 

But  this can only be true if   r = ±1  or  r = ±3

 

 

cool cool cool

 May 24, 2019
 #3
avatar+108718 
+1

Thanks Chris   laugh

Melody  May 25, 2019

36 Online Users

avatar
avatar
avatar