3,5 1/2, 10 1/2, 20 1/2,...
find the difference
write a recursive rule and a explict rule
3,5 1/2, 10 1/2, 20 1/2,...
find the difference
write a recursive rule and a explict rule
3,512,1012,2012, ⋯
find the difference:
na(n)1. difference2. difference3. difference0a0=3=62d1=521a1=112d2=52102d3=522a2=2121022023a3=412 ⋯
explict rule:
an=(n0)a0+(n1)⋅d1+(n2)⋅d2+(n3)⋅d3an=(n0)a0+(n1)⋅52+(n2)⋅52+(n3)⋅52|(n0)=1an=a0+(n1)⋅52+(n2)⋅52+(n3)⋅52|a0=3an=3+(n1)⋅52+(n2)⋅52+(n3)⋅52an=3+52⋅[(n1)+(n2)+(n3)]|(nm) if n<m→(nm)=0
recursive rule:
an=3+52⋅[(n1)+(n2)+(n3)]an+1=3+52⋅[(n+11)+(n+12)+(n+13)]an+1−an=3+52⋅[(n+11)+(n+12)+(n+13)]−3−52⋅[(n1)+(n2)+(n3)]an+1−an=52⋅[(n+11)+(n+12)+(n+13)]−52⋅[(n1)+(n2)+(n3)]an+1−an=52⋅[(n+11)−(n1)+(n+12)−(n2)+(n+13)−(n3)](n+11)−(n1)=(n0)(n+12)−(n2)=(n1)(n+13)−(n3)=(n2)an+1−an=52⋅[(n0)+(n1)+(n2)]an+1=an+52⋅[(n0)+(n1)+(n2)]|(nm) if n<m→(nm)=0
the successive differences are
2 1/2, 5, 10
and you can see that these are doubling each time
A recursive rule would bea[n]=a[n−1]+(52)×2n−1;a[0]=3
An explicit rule would bea[n]=1+5×2n2
3,5 1/2, 10 1/2, 20 1/2,...
find the difference
write a recursive rule and a explict rule
3,512,1012,2012, ⋯
find the difference:
na(n)1. difference2. difference3. difference0a0=3=62d1=521a1=112d2=52102d3=522a2=2121022023a3=412 ⋯
explict rule:
an=(n0)a0+(n1)⋅d1+(n2)⋅d2+(n3)⋅d3an=(n0)a0+(n1)⋅52+(n2)⋅52+(n3)⋅52|(n0)=1an=a0+(n1)⋅52+(n2)⋅52+(n3)⋅52|a0=3an=3+(n1)⋅52+(n2)⋅52+(n3)⋅52an=3+52⋅[(n1)+(n2)+(n3)]|(nm) if n<m→(nm)=0
recursive rule:
an=3+52⋅[(n1)+(n2)+(n3)]an+1=3+52⋅[(n+11)+(n+12)+(n+13)]an+1−an=3+52⋅[(n+11)+(n+12)+(n+13)]−3−52⋅[(n1)+(n2)+(n3)]an+1−an=52⋅[(n+11)+(n+12)+(n+13)]−52⋅[(n1)+(n2)+(n3)]an+1−an=52⋅[(n+11)−(n1)+(n+12)−(n2)+(n+13)−(n3)](n+11)−(n1)=(n0)(n+12)−(n2)=(n1)(n+13)−(n3)=(n2)an+1−an=52⋅[(n0)+(n1)+(n2)]an+1=an+52⋅[(n0)+(n1)+(n2)]|(nm) if n<m→(nm)=0