+0  
 
0
36
2
avatar

a and b are positive integers such that ab + 5a + b = 2000.  Find b.

 May 7, 2020
 #1
avatar
0

a =4    and     b=396

 May 7, 2020
 #2
avatar+24992 
+1

a and b are positive integers such that \(ab + 5a + b = 2000\).
Find b.

 

\(\begin{array}{|rcll|} \hline ab + 5a + b &=& 2000 \\ (a+1)(b+5)-5 &=& 2000 \\ \mathbf{(a+1)*(b+5)} &=& \mathbf{2005} \\ && \text{find all integer products }\ (a+1)*(b+5) = 2005 \\ \hline \end{array} \)

 

All integer products:

\(\begin{array}{|ccl|r|r|r|r|l|} \hline && (a+1)*(b+5) & (a+1) & (b+5) & a & b & \text{$a$ and $b$ are positive integers} \\ \hline 2005 &=& 1\times 2005 & 1 & 2005 & 0 & 2000 \\ 2005 &=& 5\times 401 & 5 & 401 & \mathbf{4} & \mathbf{396} & \checkmark \\ 2005 &=& 401\times 5 & 401 & 5 & 400 & 0 \\ 2005 &=& 2005\times 1 & 2005 & 1 & 2004 & -4 \\ \hline \end{array} \)

 

\(\text{$b+5 = 401$, so $b=401-5$ hence $\mathbf{b = 396}$ }\)

 

laugh

 May 8, 2020

15 Online Users

avatar
avatar