We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
168
1
avatar

Triangles ABC and ABD are isosceles with AB=AC=BD, and BD intersects AC at E. If \(\overline{BD}\perp\overline{AC}\), then what is the value of \(\angle C+\angle D\)?

 Jul 2, 2019
edited by Guest  Jul 2, 2019
 #1
avatar+105195 
+1

Let angle BAE  = 1  Let angle DAE  = 2   Let angle ABE = 3    Let angle ADE = 4  Let angle EBC = 5

Let angle ECB  = 6

So.....since triangle ABC  and triangle  ABD are isosceles....we have that

3 + 5  = 6       (1)

1 + 2  = 4       (2)

 

3  = 90° - 1     (3)

2 = 90° - 4     (4)

5 = 90° - 6      (5)

 

 

Sub (3), (4) and , (5)     into   (1) and (2)

 

(90° - 1) + (90° - 6)  = 6      ⇒  180° - 1  = 2*6      (7)

1  +  (90° -4)  = 4  ⇒            90° + 1  = 2*4         (8)

 

Add (7) and (8)  and we have that

 

270°  = 2*4 + 2*6

270° = 2 (4 + 6)  divide both sides by  2

135°  = 4 + 6  =  Angle ADE + angle ECB =  angle C + angle D

 

 

cool cool cool

 Jul 2, 2019

31 Online Users

avatar
avatar
avatar